
What is Strafe Jumping?

idTech3 and the Game Engine as Software Platform
Dylan Lederle-Ensign & Noah Wardrip-Fruin

INTRODUCTION

Strafe jumping is a technique by which players can break the “speed
limit” of games built on the Quake family of engines, and achieve
up to double the normal movement speed. It exploits a bug deep in
the physics engine, where the player’s ground friction is calculated,
to minimize this friction and speed up the player’s movement through
successive jumps. This speedup drastically increases the pace of
gameplay and contributes to the sense that Quake III Arena (id
Software, 1999) is a twitch shooter which rewards quick reflexes
(Juul, 2005). Although it was possible to fix the glitch, the player
community intervened to preserve it. It is a strange example, in
which a glitch enters into the game design space, and is eventually
adopted by the player community (followed by some designers and
developers) as a key game mechanic.

This paper argues that a full account of strafe jumping requires an
understanding of the context in which it emerged, both socially and
technically. The distinct features of software platforms, specifically
the game engine, must be taken into consideration. This paper
characterizes game engines as software platforms, and uses this to
conduct a brief platform study of idTech3, the engine underneath
Quake III Arena. This study includes a code reading of the function
that enables strafe jumping, and references John Carmack’s extensive
development notes to provide social and historical context. We
consider the significance of strafe jumping to the player community’s
play experience, profiling the DeFrag movement mod. Finally, we

123

consider the lessons this study can provide to future work on software
platforms and game engines.

WHAT IS STRAFE JUMPING?

Strafe jumping is an exploitable bug. Just because people
have practiced hard to allow themselves to take advantage
of it does not justify it’s existance (sic).
— John Carmack, .plan June 3, 1999[1]

The precise technique for strafe jumping is difficult to describe, but
in essence the player coordinates pressing the directional keys while
jumping and moving the mouse to specific vectors. These vectors are
miscalculated by the engine, and the normal friction which slows a
player down after landing on the ground is not applied. By repeating
this process, a player can accelerate to very high velocities and
navigate around a level environment in new ways, bridging gaps
which were previously impassable.

Strafe jumping, and associated movement techniques like circle
jumping, were originally enabled by bugs dating from the first Quake
(id Software, 1996). The player community mastered their use and
incorporated them into the metagame. By the release of Quake III
Arena three years later, official maps were being designed to
specifically incorporate high skill “jumps,” which allow shortcuts
through a level, but require practice to hit the correct vectors every
time.

Our first question, in this paper, is: Within the context of game
studies, how should we think of strafe jumping? With our current
historical and interpretive frameworks, what is it, and where did it
come from? Unfortunately, this question can be difficult to answer.

For example, strafe jumping might be thought of as an element
specific to particular id Software implementations of the common
operational logics of physics and navigation. Mateas and Wardrip-
Fruin define operational logics as a “representational strategy,
supported by abstract processes or lower-level logics, for specifying

124 ToDIGRA

the behaviors a system must exhibit in order to be understood as
representing a specified domain to a specified audience” (2009).
However, to be seen as representational strategies, operational logics
must be positioned as authored, and strafe jumping was not authored.
Instead, it emerged from the interactions of the complex system
underlying Quake III Arena. This is in some ways similar to another
well-known emergent property from Quake, rocket jumping. Rocket
jumping is another movement phenomenon, but unlike strafe jumping
it emerged from an unexpected combination of explicitly authored
rules (in particular the properties of the weapon). In the case of strafe
jumping, the framework of operational logics must be revised or set
aside to understand the phenomenon.

From a different perspective, Juul includes the laws of physics in the
rules of physical sports, arguing that FIFA 2002 “requires that the
laws of physics … be explicitly implemented in the programming
on the same level as the explicit rules of the game” (2005, original
emphasis). This is necessary for FIFA to accurately simulate a real
game of soccer, and Juul argues that “therefore it makes sense to
see the laws of physics on the same level as the conventional rules
in soccer” (ibid). However, while real world physics influence the
dynamics of soccer, viewing them as another system underlying all
physical sports is clearer than characterizing them as rules. Physics is
the “platform” on which the rules of sports are designed, and play in
virtual worlds is shaped by the ways that their platforms implement
and tune physics.[2] We could attempt to position this implementation
and tuning as a set of rules, but this again implies authorship, or
at least enumeration, and strafe jumping is neither an authored rule
nor explicitly encoded anywhere in the software. It arguably isn’t
even an “emergent phenomenon” from the interactions of the rules,
but a difficult-to-correct bug (given the way the platform’s physics
rules were encoded). Placing it on the same level as rocket jumping
disregards the differences between the unintentional results of
authored rules and the accidental nature of this glitch.

Alternately, we could turn to another popular approach in game
studies and attempt to position strafe jumping as an example of game

What is Strafe Jumping? 125

rules and behavior being socially negotiated. But strafe jumping is
precisely the result of the characteristics of a technical artifact. Its
uses are of course socially negotiated, but we cannot use such a
framework to understand its origins or examine its nature.

In short, strafe jumping is difficult to account for with current
approaches to game studies. To understand where strafe jumping
comes from and how it functions requires investigations at the
platform level. To understand strafe jumping’s importance and
staying power requires an understanding of play phenomena, game
design practice, and the influence of player communities — all in the
context of game platforms. The primary platform for Quake III Arena
is its engine, known as idTech3. The rest of this paper will develop a
theory of software platforms, in an attempt to fully understand strafe
jumping. Taking the game engine as a platform, it will explore the
relationship between engines, genres, and their communities.

SOFTWARE PLATFORMS

Platform studies is an emerging field, but as Dale Leorke pointed
out in a review of the eponymous MIT Press book series (2012), it
is already verging towards a predictable formula: “One can imagine
an endless production line of books—one on the Magnavox Odyssey
or Sega Dreamcast, another on Java or Microsoft DOS—that are
valuable in themselves, but which don’t expand on the established
formula of the series.” While Leorke’s statement suggests a relatively
even balance between hardware and software platforms, in fact all the
published books in the series (and, to the best of our knowledge, all
but one of the forthcoming books) focus on hardware platforms. This
paper instead is an initial look at a software platform — and examines
some aspects of software platforms, particularly game engines, which
have not yet received critical attention. The study of game engines
provides insights into details of game genres, which are narrower and
more specific than the constraints imposed by most hardware, as well
as more malleable due to the flexibility of software. As might be
expected in such an initial look, this paper identifies more issues than
it seeks to resolve.

126 ToDIGRA

In Montfort and Bogost’s diagram of the layers of digital media
(2009), platform is at the bottom, followed by code above. Software
platforms complicate this boundary, which is comparatively distinct
and taken for granted when dealing with hardware. Software
platforms are both made up of code to run on a variety of physical
devices, as well as capable of executing code. This navigation
through layers of abstraction is a strength of Montfort and Bogost’s
model, and studying software platforms helps us to understand the
tangled, recursive relationships between code and platforms.

As this suggests, we see it as key that software platforms are less
clearly defined than commercial game consoles and other hardware
platforms. Just as the boundary between code and platform blends
and becomes difficult to pin down, even the border between different
platforms is fuzzy. As our below discussion of idTech3 will
demonstrate with a proliferation of modified engines, software
platforms can be used piecemeal by developers, and extended well
beyond their original capacities in ways that hardware platforms
rarely are. How much shared code is necessary to be considered the
same platform? If two software platforms share an architecture, but
have significantly differing implementations, how do we characterize
this relationship? If code written for one software platform runs on
another, are they different realizations of the same platform? These
are questions that past studies of hardware platforms have not
addressed.

Murray and Salter, in their study of Flash (Forthcoming) situate it
within the tangled platform of the Web. Flash extends the native
capabilities of Web browsers, and must co-exist with a multitude
of technologies like CSS, HTML and JavaScript. Flash is clearly a
platform of its own, with a full development suite and very different
affordances from the native Web. However, its development and
existence are also closely intertwined with the Web, as Murray and
Salter explain in a chapter considering Flash’s future in an HTML5
Web. Tangled, simultaneously existing platforms seem to be a
characteristic of software platforms, one which deserves further
study.

What is Strafe Jumping? 127

This is an incomplete characterization of software platforms. As
noted above, it raises more questions than it answers. However, it gets
us closer to an understanding of strafe jumping. This phenomenon is
a property of its engine, which can be characterized as a specific type
of software platform. Game engines are the key software platform for
video games.

Game Engines as Platforms

Game engines are the infrastructural software and tools which allow
developers to manage the vast complexity of modern games. They
commonly provide physics simulations, networking, and graphical
primitives as well as often handling portability across physical
computing platforms. They are just as important for shaping the
playable experience as the hardware itself, perhaps more so.
Decisions made in the design and implementation of the engine
clearly constrain the games made on them.[3]

Henry Lowood identifies DOOM (id Software, 1993) as the first
game to use the term “game engine.” He associates the engine with
development efficiency, and argues that in 1993 id imagined “the
licensed game engine could become a platform upon which diverse
games would be constructed” (Lowood, 2014).[4] He continues on to
state that “the development of engine technology traces the growth
and maturation of the game industry” (ibid). The efficiency enabled
by game engines allowed the industry to develop games much more
rapidly than before.

Game developers will license another company’s engine to build their
game on, but the exact requirements for each game are different.
Due to the flexibility of software, the underlying engine can in some
cases be modified as necessary. While hardware modifications can be
done by individuals, they are not typically done by commercial game
studios. Instead, hardware platforms are extended with peripherals.[5]
Though it is possible to modify the game engine, the challenge of
understanding the internals of a system as large and complex as
a modern 3D game engine makes it difficult to make the changes

128 ToDIGRA

developers desire. It is easier to treat the engine as a black box to
interface with, and utilize the official tools provided for developers to
achieve their goals.

Andrew Hutchinson has called working inside the technological
limits provided by platforms the “pragmatic expression” of games
(2008). Hutchinson writes that both Doom and Myst (Cyan, 1993)
originally aimed for a similar immersive 3D style. However, due to
the limited computational power available in 1993, both were forced
to make compromises and engineering decisions that influenced the
aesthetics of the games. Hutchinson explains that “Myst went the
visual ‘high and slow’ road, and Doom went the ‘low and fast’
road” (2008). Despite their flexibility, software platforms are still
constrained by the hardware platforms below them.

In “Untangling Twine” (2013), a paper about the hypertext story
platform Twine, Jane Friedhoff argues that the documentation,
community and discourse around the Twine platform make it
uniquely suited to experimental playable media experiences that push
at the boundaries of what games are. Friedhoff rightfully emphasizes
that Twine’s profiling by independent game maker Anna Anthropy
“likely shaped the initial crop of games created with the platform.”
Friedhoff argues that both the free, web-based nature of Twine and
its promotion by Anthropy make the platform appealing for
marginalized people. She notes that the official documentation
explicitly tries to appeal to writers rather than coders saying: “rather
than answering ‘how would you make a game with this?’, the official
Twine reference manual focuses on answering ‘why would you make
a game at all?’” Friedhoff’s work emphasizes that documentation
and community are key to a platform’s growth and the aesthetic that
emerges around them.

Combining Hutchinson’s writing on the technical limitations that
game engines address with Friedhoff’s about the community around
them, we can start to see a clearer picture of the significance and
influence of game engines as software platforms. Engines, like
hardware platforms, have a particular set of affordances — which

What is Strafe Jumping? 129

make certain kinds of game creation comparatively easy for
developers. They also generally have an ecosystem of tools for people
contributing in different manners (e.g., as level designers, artists and
coders) to interact with the engine in particular ways. These combine
to align engines so closely to particular genres and styles of game that
technical research into game engines has questioned whether engines
can be separated from their genres (Anderson et al., 2008).

Game Engines and Game Genre

Game genre is notoriously messy and marketing defined (Aarseth,
2004). Game genres are usually defined by the dominant play activity,
while genres in other media are typically defined by shared
iconography (Wolf, 2001). To address this disconnect, David
Clearwater proposes three aspects of genre categorization: formal/
aesthetic, industrial/discursive context, and social meaning/cultural
practice. While the industrial/discursive aspects are certainly
influential in shaping game engines, this paper addresses formal
dimensions of genre.

Game engines are made to support certain prototypical games. In the
case of idTech3, this was Quake III Arena, but even engines which
are not made for a single game have a particular type of game in
mind. The support for these games takes the form of implemented
features, which we will characterize as particular operational logics
(Mateas and Wardrip-Fruin 2009). These easily usable logics make
it straightforward for developers to make games similar to the
prototypical game. However, because game engines are also
modifiable and extensible, developers find other uses for these logics
and ways to adjust them. This is one source of difficulty regarding
genre. Two games may share many common formal elements, and
perhaps substantial source code, but may have very different play
dynamics because of extensions or modifications to the original
engine.

This also leads to a major difference between a game engine and
a more general purpose hardware platform like a game console.

130 ToDIGRA

Engines are closely aligned to particular prototypical games. This
leads to the surprising characterization of the Atari VCS as a game
engine implemented in hardware. As Bogost and Montfort (2009)
detail extensively, the console was designed to support Pong. The
necessary operational logics (most notably collision detection) were
then appropriated to form the myriad other games published for the
console.

Other authors have characterized video game genres as common
interfaces (Douglass, 2007), but they can also be thought of as
collections of common operational logics. Game engines are tightly
tied to specific genres because they implement a large number of
these shared operational logics (Wardrip-Fruin, 2009). Close study
of the implementation choices for a particular logic is one way to
learn more about it and how it functions across different games. This
characterization of genre is not meant as a complete overhaul or
recharacterization of existing genre literature. Engines are one way to
clarify that messiness, operational logics are clear

Game Engines and Community

Game engines, like all platforms, have complex communities of users
around them. The original developers, commercial licensees, amateur
modders, and players all have a stake in the engine’s success and
direction. John Carmack, in his .plan from December 31 2004,
discussed the delayed open sourcing of idTech3 due to a recent
licensing agreement: “Previous source code releases were held up
until the last commercial license of the technology shipped, but with
the evolving nature of game engines today, it is a lot less clear.
There are still bits of early Quake code in Half Life 2, and the
remaining licensees of Q3 technology intend to continue their internal
developments along similar lines, so there probably won’t be nearly
as sharp a cutoff as before.” The original creator, Carmack, wanted
to open source this technology to make it easier for modders and
amateurs to create games using it. However, his company had
commercial agreements with other studios. Releasing it for free
would devalue their purchase of a license. The network of actors with

What is Strafe Jumping? 131

a stake in the future of idTech3 was complex, and Carmack wanted to
serve as many competing interests as possible.

As Carmack mentions, some small pieces of Quake code survive,
both in the current generation of idTech engines as well as those of
their licensees, most notably Valve’s Source engine (used in Half Life
2). The tangled nature of game engines makes drawing clear lines
between them difficult, and perhaps pointless. It is easier and more
descriptive to classify them into “families,” such as the Quake family
(of which Source could be a branch), the Unreal family, the Crysis
family, and so forth. Each family has a distinct style and “feel.” This
shared sense of feel can be traced back to low level decisions in the
physics or graphical simulations that form the engine.

Game designer and teacher Robert Yang noted on his blog the
influence that the Source engine has had on his aesthetic: “When I’m
trying to tune movement physics in other games, am I just trying
to replicate the feel of Half-Life because that’s what feels ‘right’ to
me? (Unreal Engine games almost all universally feel ‘chunky’ to
me, in comparison. I’m sure people who grow up using Unreal would
disagree with me, and argue that Half-Life or Quake-lineage games
are too loose.)” (Yang, 2013). This is one of the key reasons for
studying game engines. More than any other single piece of software,
they exert influence over the design of the games and genres that are
built on them.

In short, we argue that understanding game engines as software
platforms is useful for studying game genres, operational logics, and
the games built on them. This characterization provides technical
insight into the way specific logics work, and includes the social
factors by which communities shape their platforms, but requires
setting aside a strongly authorial view of all aspects of logics as
intentionally representational. We follow this, in this paper’s next
section, with a short platform study of the idTech3 engine.

132 ToDIGRA

IDTECH3

The history of id Software has been told more widely and often than
most video game developers’. It is an American success story, of
the small independent creator striking it rich with a good idea and
devoted work ethic. David Kushner tells this story in the popular
history Masters of Doom: How Two Guys Created an Empire and
Transformed Pop Culture (2003). Kushner’s book is framed around
“the two Johns,” Carmack and Romero. Their creative chemistry and
interpersonal drama leads to the rise and fall of id. This paper is not
about their legacy, but about their technology, specifically the engine
from Quake III Arena, idTech3.

Focus on Mod Programming in Quake III Arena (Holmes, 2002),
a technical manual for aspiring game programmers, describes the
influence of John Carmack as follows: “John Carmack, lead
programmer at id Software, is the man responsible for creating the
technology that drives all the latest and greatest games. Not only
do his 3D engines power id Software’s games, such as the Quake
series, it also powers many other companies’ games as well, thanks
to licensing agreements.” As seen in Figure 1 (Wikipedia user Tei,
2013) the Quake family of games and engines is expansive. While
this diagram is from Wikipedia and has some problems (it does not
distinguish clearly between mods, engines, and commercial games,
and it does not indicate how closely related linked entities are) it does
give a sense of the connections between the idTech engines and their
descendents. It is also clear that after idTech3 there were significantly
fewer licensees than the earlier games. Despite the numerous games
built in the Quake-engine family, Carmack claims it was not their
intent: “It’s interesting when you look at our technology licensing —
it was never really a business that I wanted to be in” (Graft, 2011).
While idTech4 was licensed to a handful of outside studios, idTech5
is solely for id Software use. idTech3 was the last of the highly
influential Quake engines.

According to a popular Quake 3 source code review from Fabien
Sanglard, “the engine is mostly an evolution of idTech2” (Sanglard,

What is Strafe Jumping? 133

2012). Building on the groundbreaking work that they did with the
first Quake, id Software’s engineering team, led by John Carmack,
created a complex game engine that balanced the goals of speed,
security and portability across physical computing platforms.
Internally known as “Trinity”, the engine introduced the Quake
Virtual Machine (QVM), which Holmes’ emphasis allowed for
increased security for running mods. This was, in fact, one of
Carmack’s main goals, as noted in his .plan entry from November
3, 1998. The idTech2 architecture supported mods in the form of
potentially dangerous .dlls. In order to continue supporting mods,
Carmack went to the significant engineering effort of developing the
QVM, running a subset of the C programming language, QuakeC.
idTech3 also moved to fully hardware rendered graphics, and featured
an improved network model (Lederle-Ensign, 2013).

idTech3 exemplifies the diversity and extensibility of software
platforms. There are a number of engines that are direct descendents
of idTech3, including ioquake3, Quake III w/ Uber tools, and
qFusion. Uber tools were a set of proprietary extensions to the engine
from Ritual Entertainment, used in American McGee’s Alice (Rogue
Entertainment, 2000), Star Trek Elite Force II (Ritual Entertainment,
2003), and several other games. The improvements seem to mostly
be in scripting for single player experiences, an area that was not a
concern for Quake III Arena. QFusion and ioquake3 are both open
source forks of the engine. Ioquake maintains a modernized version
of the engine, which supports a number of total conversion mods
released as standalone games, such as Urban Terror (Silicon Ice,
2000) and World of Padman (Padworld Entertainment, 2007).
QFusion was originally a port of idTech2, but now supports idTech3
data formats. It was mainly developed for the competitive arena
shooter Warsow (Warsow Team, 2005).

The diversity of the idTech family of engines is a trait of software
platforms. Software platforms are more flexible than hardware
platforms, and are easily extended by third parties. This leads to a
proliferation of slightly modified platforms, and adds challenges for

134 ToDIGRA

scholars studying them. Frequently software platforms are less stable
objects and more groups of related concepts and software objects.

The history and technical details of the idTech3 platform provide
context for strafe jumping. It came from a fast moving start-up studio,
which iterated quickly on its technology. While a distinct platform
in its own right, idTech3 cannot be understood in isolation from
the engines that came before it, or those that followed. In the next
section, the site where strafe jumping is encoded is traced through
these different engines.

What is Strafe Jumping? 135

136 ToDIGRA

http://todigra.pressbooks.com/files/2016/02/Figure_1-1.png
http://todigra.pressbooks.com/files/2016/02/Figure_1-1.png

Figure 1: Games descended from idTech1 Engine

Strafe Jumping in Code

When I tried fixing the code so that it just didn’t work, I thought
it changed the normal running movement in an unfortunate way. —
John Carmack, June 3, 1998

Carmack viewed strafe jumping as a bug. Thanks to id’s open
sourcing of Quake III Arena in 2005, we can pinpoint exactly where
this bug occurs. In the file “/code/game/bg_pmove.c” we find the
following function:

//Handles user intended acceleration

static void PM_Accelerate(vec3_t wishdir, float wishspeed, float
accel) {

#if 1

// q2 style

int i;

float addspeed, accelspeed, currentspeed;

currentspeed = DotProduct (pm->ps->velocity, wishdir);

addspeed = wishspeed – currentspeed;

if (addspeed <= 0) {

return;

}

accelspeed = accel*pml.frametime*wishspeed;

if (accelspeed > addspeed) {

What is Strafe Jumping? 137

accelspeed = addspeed;

}

for (i=0 ; i<3 ; i++) {

pm->ps->velocity[i] += accelspeed*wishdir[i];

}

#else

// proper way (avoids strafe jump maxspeed bug), but feels bad

vec3_t wishVelocity;

vec3_t pushDir;

float pushLen;

float canPush;

VectorScale(wishdir, wishspeed, wishVelocity);

VectorSubtract(wishVelocity, pm->ps->velocity, pushDir);

pushLen = VectorNormalize(pushDir);

canPush = accel*pml.frametime*wishspeed;

if (canPush > pushLen) {

canPush = pushLen;

}

VectorMA(pm->ps->velocity, canPush, pushDir, pm->ps->velocity
);

#endif

138 ToDIGRA

}

Following Carmack’s mention that his fix for strafing changed
“normal” running for the worse, we believe that PM_Accelerate is
the main place where the physics necessary for strafe jumping are
implemented. This function is called when the player wishes to
accelerate, taking in the player’s intended direction, her intended
speed, and an acceleration multiplier. The precise vector math bug is
not as important as the comments around the code. First, note that
the first block, inside of “#if 1”, will always execute. In C, and many
other programming languages, 1 is equivalent to true, so this is just a
way of block commenting out the second half of the function so it is
not evaluated. As the comment in the second block alludes, this code
takes out support for strafe jumping. However, it does so at the cost
of the game’s “feel.”

Small choices of how to write highly specific simulations become
hugely important and influential to the game design space. As more
code and game assets are built on the assumption of a particular
behavior, it becomes calcified and cannot be easily changed. This
complicates the idea that software is flexible. It also demonstrates that
the modern game engine is so complex that even the lead developer
on the project cannot always determine the consequences of low level
changes. At the platform level, code is difficult to change.

This function can also be found in several other related code bases.
We can find the identical function in the ioQuake and qFusion. This
makes sense, as those projects are trying in some way to build on the
idTech3 source releases. We can also go backwards and find identical
code in the Quake II (id Software, 1997) source code. In fact, while
not identical, we can find extremely similar code in the original
Quake source code. In the Doom 3 (id Software, 2004) codebase,
running on idTech4, we find a function with the same code structure,
with the same comments, but updated to C++.

In the open-sourced codebase for Return to Castle Wolfenstein (2001)

What is Strafe Jumping? 139

we can find the same function, nearly identical except for a snippet
code preceded by this comment:

// Ridah, variable friction for AI’s

“Ridah” was the nickname for a programmer at Gray Matter
Interactive, one of the studios that worked on RTCW. The code
appears to be a simple modification, not significantly altering the
effects of strafe jumping, but it is an example of something that
you can find throughout the RTCW codebase. When the developers
have modified something “deep” in the engine, code which was
originally written by id, they usually noted the change with a signed
comment. These signatures are not found in other files that were
newly authored for this game, only the engine code. It is a clear
indication that idTech3 is a substrate for this new game, and an
indication of how different software platforms are from hardware
platforms. While hardware modding is certainly possible, it is not
a typical, commercial activity. With the source code of the engine
available, there is nothing at a technical level stopping developers
from completely changing the behavior of PM_Accelerate and
removing strafe jumping from their games. However, the weight
of the surrounding system’s complexity makes any change a risky
endeavor, hence the cautious signing of any modifications.

Indeed, complexity would not be enough to stop Carmack from
“fixing” strafe jumping if it were a normal glitch. However, this was
a glitch which had many vocal defenders in the Quake community.

Strafing, the Player Community and Software Platforms

In his .plan file from Jun 03, 1999 Carmack posted this about strafing:

Some reasonable messages have convinced me that a single
immediate jump after landing may be important to gameplay. I’ll
experiment with it. Strafe jumping is an exploitable bug. Just because
people have practiced hard to allow themselves to take advantage of
it does not justify it’s existance (sic). When I tried fixing the code
so that it just didn’t work, I thought it changed the normal running

140 ToDIGRA

movement in an unfortunate way. In the absense (sic) of powerups or
level features (wind tunnels, jump pads, etc), the game characters are
supposed to be badasses with big guns. Arnold Schwartzenegger (sic)
and Sigourney Weaver don’t get down a hallway by hopping like a
bunny rabbit. This is personal preference, but when I play online, I
enjoy it more when people are running around dodging, rather than
hopping. My personal preference just counts a lot.

His references to action movie stars give a sense of the aesthetic goals
that id had for Quake III Arena. They were aiming for a cartoony,
Hollywood style action adventure. They wanted to empower their
players to act out fantasies of being “badasses with big guns.” This
is an extraordinary example of a developer responding to community
wishes on something as fundamental as movement physics. The
Quake community loved the challenge and blazing speed made
possible by strafing.

As Carmack mentions when he discusses “normal running”, the
“feel” of movement is immensely important for player enjoyment of
a game. An episode from the development of Quake II illustrates how
strongly people feel about slight changes to the movement physics.
In the post-release patch 3.15, the following change was made by an
id programmer nicknamed “Zoid,” who was maintaining the game:
“Player movement code re-written to be similiar (sic) to that of
NetQuake and later versions of QuakeWorld. Player has more control
in the air and gets a boost in vertical speed when jumping off the
top of ramps.” In a .plan entry from July 4, 1998 entitled “Here is
the real story on the movement physics changes” Carmack addresses
concerns of the community surrounding the apparently controversial
change. After defending the rights of Zoid to make changes he
wanted, Carmack acknowledged that “The air movement code wasn’t
a good thing to change in Quake 2, because … subtle physics changes
can have lots of unintended effects.” He goes on to note that: “None
of the quake physics are remotely close to real world physics, so I
don’t think one way is significantly more ‘real’ than the other. In Q2,
you accelerate from 0 to 27 mph in 1/30 of a second, which just (sic)
as unrealistic as being able to accelerate in midair.” The next day, the

What is Strafe Jumping? 141

change was made optional for servers to enable or not, and Carmack
closed the issue by reflecting (presumably sarcastically) on “the joy
of having a wide audience that knows your email address.”

This movement can be a pleasure in its own right, exemplified by
the Quake III Arena mod “DeFrag,” which is a movement-based mod
in which players navigate obstacle courses as fast as possible. The
mod offers several movement styles, including the “vanilla” Q3A,
as well as CPMA from the Challenge ProMode Arena mod, which
adds increased movement control for skilled players. DeFrag also
distributes official map packs to challenge players. These maps are
designed to exploit strafe jumping, as well as emergent phenomenon
like rocket jumping, in ways that are not found in the conventional
deathmatch maps. The goal is to move from one end of the level to
the other as fast as possible, and when it was active the community
held contests for who could achieve the lowest times on officially
sanctioned maps. For some players, DeFrag functions as a training
mod, with features which let you keep track of how fast you are
moving in order to practice and improve your strafing abilities. The
DeFrag scene also embraces and celebrates “tricking” or moving
about the level in non-intuitive ways, reminiscent of digital parkour.

The DeFrag community distributes demos that are run in-engine,
but they also edit their exploits into machinima. Their movements
are synced to music, typically electronic, and the effect is extremely
evocative of dance. The most viewed DeFrag video on YouTube
is “Event Horizon 2 – Quake 3 Team Trick Jumping” with over
380k views at the time this article was written. Rather than a solo
video promoting a single player’s skill, it promotes a “tricking crew.”
The bulk of the video’s 15 minutes is devoted to elaborately
choreographed group tricks, such as having multiple players firing
rockets at the same spot in order to propel another further into the air
than is possible alone. It feels very much like a dance troupe.

While DeFrag players push the limits of strafing with their precision,
nearly all Quake III Arena players who hope to be competitive must
learn the basics or be left in the dust. One particularly famous

142 ToDIGRA

example is the Bridge-to-Rail jump on the map Q3DM6, or “The
Camping Grounds.” This jump allows players to access the map’s
only rail gun, a particularly powerful and useful weapon, in a little
under 3 seconds from a particular bridge. Without the jump, it takes
more on the order of 10-15 seconds, a lifetime in Quake. This jump
was clearly designed into the map, and is key to successful play. As
evidenced by the numerous YouTube videos demonstrating in detail
how to learn the jump, it has become a rite of passage for players.

This demonstrates that while John Carmack and other id
programmers may originally have wished to eliminate the “bug” of
strafing, by Quake III Arena id’s level designers treated it as just
another affordance of the engine. They exploited it in their designs,
elevating the behavior from glitch to mechanic. In fact Quake Live
(2010), the browser based version of Quake III Arena, features
official tutorials on strafe jumping techniques.

Strafe jumping is an important feature for the Quake player
community, as exemplified by the DeFrag mod. The community is
also central to the persistence of the glitch. id Software fixed many
glitches in the course of developing idTech3, but this one survived. It
survived in large part because the player community advocated for it
as an important part of their play experience.

CONCLUSION

In the course of investigating the phenomenon of strafe jumping, we
have developed an account of game engines as software platforms.
This allows us to more fully understand the context in which strafing
developed and understand strafe jumping itself. Strafe jumping
emerged from the complexity of modern game development and the
attempt to manage this complexity by abstracting common processes
into a game engine. These processes make up the infrastructure that
games are built on. As this phenomenon illustrates, small
implementation details can have wide ranging effects on the play
experience of games using the engine. Game engines are particularly
opinionated development tools, ones which are tightly tied to game

What is Strafe Jumping? 143

genres. Genres require common operational logics to be implemented
across games, which creates a problem that game engines solve.
Some of these logics, which are below the level of the rules which
a game designer specifies, nevertheless exert a large influence over
the play experience. As our code study demonstrates, sometimes
fully understanding these logics requires careful consideration of their
implementation — and a setting aside of the assumption that every
aspect of implemented logics should be seen through the lens of
authorship.

This study raises questions about the nature of software platforms,
particularly with regard to their flexibility or stability. We believe
idTech3 to be a distinct platform in its own right, but we have also
traced nearly identical code through several generations of idTech
engines. While hardware platforms surely share common
characteristics between generations, the textuality of code makes it
simple to trace specific implementations through different code bases,
and the open sourcing culture of id Software made this study possible.
A strong argument could be made that all the idTech engines are the
same platform; merely iterations on a theme. While we chose to focus
on one specific code base, the ease of patching and updating software
does complicate platform boundaries.

The social negotiation highlighted in Carmack’s open development
diaries is another important element. Software’s flexibility allowed
Carmack to take input and implement changes rapidly, without the
manufacturing time and cost associated with hardware. However, the
complexity of the engine made it difficult to “fix” strafe jumping.
This complicates the idea that hardware is stable and software is
flexible. This tension points to further work for software studies
beyond games.

Strafe jumping is an unanticipated phenomenon from the platform
layer. It is a possibility enabled by specific implementations of the
operation logics of navigation and physics, creating a new means
of interactive movement through a simulated 3D space. While it
originated below the level of the authored rules, some games have

144 ToDIGRA

incorporated it as a mechanic and designed game features around it.
It was discovered, embraced and advocated for by an active player
community. Ultimately, it became a distinctive feature of games built
on idTech engines.

END NOTES

[1] With implementations dating back to the 1970s, the “finger”
command on some network computer systems allows the querying
of a particular user or network resource’s status. For users this can
include items such as full name, email address, and special files
“.project” and “.plan” — which in some contexts served similar
purposes to the (micro) blogging and status updates that are common
in today’s social networking approaches. At id, John Carmack used
his “.plan” to share information with the public about his current work
and ideas, which we reference here as they appear in the archive at
http://floodyberry.com/carmack/plan.html/.

[2] Further, we understand real world physics easily and
unconsciously, but fully comprehending implemented physics
requires study.

[3] Beyond a certain point of working against the assumptions and
constraints built into an engine, it is more effective for developers
to use a different engine or write a new one. For this reason, the
decision to use an engine (which may be made by executives rather
than developers) is the decision to accept a certain level of constraint
from its architecture.

[4] While the term “game engine” may have come into use around
the development and release of DOOM, the separation of data and
process in game development, allowing multiple games to be
developed by substituting new data, certainly had prior precedent in
the industry — including in the practices of Infocom and LucasArts.
However, we are aware of no previous examples of engines licensed
by game developers to outside game developers.

What is Strafe Jumping? 145

[5] In some cases, physical hardware has also been extended through
additional chips embedded in game cartridges and other approaches
that may not immediately come to mind when hearing the term
“peripherals.”

BIBLIOGRAPHY

Aarseth, E. (2004). Genre Trouble | Electronic Book Review.
Retrieved April 07, 2015, from
http://www.electronicbookreview.com/thread/firstperson/vigilant

Anderson, Eike Falk, Steffen Engel, Peter Comninos, and Leigh
McLoughlin. 2008. “The Case for Research in Game Engine
Architecture.” In Proceedings of the 2008 Conference on Future
Play: Research, Play, Share, 228–231. Future Play ’08. New York,
NY, USA: ACM. doi:10.1145/1496984.1497031. http://doi.acm.org/
10.1145/1496984.1497031.

Apperley, T. H. (2006). Genre and game studies: Toward a critical
approach to video game genres. Simulation & Gaming, 37(1), 6–23.
doi:10.1177/1046878105282278

Bogost, I., & Montfort, N. (2009). Racing the Beam: The Atari Video
Computer System. MIT Press.

Carmack, John. “The John Carmack .plan Archive.”
http://floodyberry.com/carmack/plan.html.

Douglass, Jeremy. 2007. “Command Lines: Aesthetics and Technique
in Interactive Fiction and New Media”. Dissertation, University of
California, Santa Barbara. http://jeremydouglass.com/
dissertation.html.

Graft, Kris. 2011. “E3: Id’s Carmack, Willits Happy To Be Done
With Engine Licensing.”Gamasutra. June 8. http://gamasutra.com/
view/news/125324/
E3_ids_Carmack_Willits_Happy_To_Be_Done_With_Engine_Licensing.php.

146 ToDIGRA

http://dx.doi.org/10.1145/1496984.1497031
http://doi.acm.org/10.1145/1496984.1497031
http://doi.acm.org/10.1145/1496984.1497031
http://floodyberry.com/carmack/plan.html
http://jeremydouglass.com/dissertation.html
http://jeremydouglass.com/dissertation.html
http://gamasutra.com/view/news/125324/E3_ids_Carmack_Willits_Happy_To_Be_Done_With_Engine_Licensing.php
http://gamasutra.com/view/news/125324/E3_ids_Carmack_Willits_Happy_To_Be_Done_With_Engine_Licensing.php
http://gamasutra.com/view/news/125324/E3_ids_Carmack_Willits_Happy_To_Be_Done_With_Engine_Licensing.php

Holmes, Shawn. 2002. Focus on Mod Programming in Quake III
Arena. Boston :; Independence :: Course Technology ; CENGAGE
Learning Distributor.

Hutchinson, Andrew. 2008. “Making the Water Move: Techno-
Historic Limits in the Game Aesthetics of Myst and Doom.”Game
Studies 8 (1). http://gamestudies.org/0801/articles/hutch.

id Software. 1993. DOOM. https://github.com/id-Software/DOOM.

———. 1996. Quake. https://github.com/id-Software/Quake.

———. 1999. Quake III Arena. https://github.com/id-Software/
Quake-III-Arena.

———. 2004. Doom 3. https://github.com/id-Software/DOOM-3.

———. 2010. Quake Live. http://www.quakelive.com.

Jane, Friedhoff. 2013. “Untangling Twine: A Platform
Study.”http://www.digra.org/wp-content/uploads/digital-library/
paper_67.pdf.

Juul, Jesper. 2005. Half-real: Video Games Between Real Rules and
Fictional Worlds. Cambridge, Mass.: MIT Press.

Kushner, David. 2004. Masters of Doom: How Two Guys Created
an Empire and Transformed Pop Culture. New York: Random House
Trade Paperbacks.

Lederle-Ensign, Dylan. 2013. “Lags, Frags and John Carmack: a
Platform Studies Analysis of the Quake III Network Module”.
Conference Talk presented at the Digra 2013.

Leorke, Dale. 2012. “Rebranding the Platform: The Limitations of
‘Platform Studies’.” Digital Culture & Education 4 (3):
257–268.http://www.digitalcultureandeducation.com/uncategorized/
dce1073_leorke_2012_html/.

What is Strafe Jumping? 147

http://gamestudies.org/0801/articles/hutch
https://github.com/id-Software/DOOM
https://github.com/id-Software/Quake
https://github.com/id-Software/Quake-III-Arena
https://github.com/id-Software/Quake-III-Arena
https://github.com/id-Software/DOOM-3
http://www.quakelive.com/
http://www.digra.org/wp-content/uploads/digital-library/paper_67.pdf
http://www.digra.org/wp-content/uploads/digital-library/paper_67.pdf
http://www.digitalcultureandeducation.com/uncategorized/dce1073_leorke_2012_html/
http://www.digitalcultureandeducation.com/uncategorized/dce1073_leorke_2012_html/

Lowood, Henry. 2014. “Game Engines and Game
History.”Kinephanos (History of Games International Conference
Proceedings).http://www.kinephanos.ca/2014/game-engines-and-
game-history/.

Mateas Michael and Wardrip-Fruin, Noah. 2009. “Defining
Operational Logics.”http://www.digra.org/wp-content/uploads/
digital-library/09287.21197.pdf.

Montfort, Nick, and Ian Bogost. 2009. Racing the Beam: The Atari
Video Computer System. 2nd ptg. The MIT Press.

Murray, John, and Anastasia Salter. 2015. Flash: Building the
Interactive Web.

Padworld Entertainment. 2007. World of Padman.

Ritual Entertainment. 2003. Star Trek: Elite Force II.

Rogue Entertainment. 2000. American McGee’s Alice.

Sanglard, Fabien. 2012. “Quake 3 Source Code Review.” June
30.http://fabiensanglard.net/quake3/index.php.

Silicon Ice. 2000. Urban Terror.

Tei. 2013. “File:Quake – Family Tree.svg.” Wikipedia, the Free
Encyclopedia.http://en.wikipedia.org/wiki/File:Quake_-
_family_tree.svg.

Wardrip-Fruin, Noah. 2009. Expressive Processing: Digital Fictions,
Computer Games, and Software Studies. The MIT Press.

Warsow Team. 2005. Warsow.

Wolf, Mark J.P. (Ed.). (2001). The Medium of the Video Game.

148 ToDIGRA

http://www.kinephanos.ca/2014/game-engines-and-game-history/
http://www.kinephanos.ca/2014/game-engines-and-game-history/
http://www.digra.org/wp-content/uploads/digital-library/09287.21197.pdf
http://www.digra.org/wp-content/uploads/digital-library/09287.21197.pdf
http://fabiensanglard.net/quake3/index.php
http://en.wikipedia.org/wiki/File:Quake_-_family_tree.svg
http://en.wikipedia.org/wiki/File:Quake_-_family_tree.svg

