
37

C H A P T E R 2

Computational Thinking

Using Computer Game Programming
to Teach Computational Thinking Skills

Linda Werner, University of California, Santa Cruz, California, U.S., linda@soe.ucsc.edu
Jill Denner, ETR, Scotts Valley, California, U.S., jilld@etr.org
Shannon Campe, ETR, Scotts Valley, California, U.S., shannonc@etr.org

Key Summary Points

Computer game programming can be used to engage middle school students in the
development of computational thinking skills.

This paper describes a framework, Game Computational Sophistication, which is used to
evaluate students’ games regarding their computational sophistication.

Best practices include suggested assessment strategies, and ways that teachers can use
computer game programming to maximize computational thinking.

Key Terms

Computer game programming
Computational thinking
Metrics for operationalization of computational thinking
Computational sophistication
Programming construct
Pattern
Game mechanic
Middle school

1

2

3

38

Introduction

A good way for teachers to motivate students to work on computational thinking (CT) skills is by bringing
computer game programming into the K-12 classroom. CT is described as a set of skills that includes
formulating problems, logically organizing and analyzing data, representing data through abstractions,
and automating solutions (Barr & Stephenson, 2011). Selby (2013) proposes a definition of CT focusing on
the activities that develop acquisition and provides evidence of CT skills. These include the ability to
think in abstractions, generalizations, algorithmically, and in terms of decomposition and evaluation.

Wing (2006) explains that “(c)omputational thinking will be a fundamental skill used by everyone in
the world by the middle of the 21st century.” The Computer Science Teachers Association (CSTA) has
included elements of CT in its “K-12 Computer Science Standards,” such as problem solving, algorithms,
data representation, modeling and simulation, and abstraction (CSTA Standards Task Force, 2011).
These standards also identify a developmental progression in these skills. For example, a middle school
level understanding of abstraction involves being able to decompose a problem into sub-parts, whereas
a high school level understanding of abstraction involves using procedural abstraction, object-oriented
design, and functional design to decompose a large-scale computational problem.

While most agree that CT is a set of important skills to develop, there is little guidance on how to
teach them. Lee et al. (2011) describe an instructional progression that includes the steps that teachers
can take to engage students in CT and involves creating models and simulations, as well as designing
and programming computer games. Selby (2013) suggests that the following activities can lead to the
development of CT skills: problem solving, systems design, automation, modeling, simulation, and
visualization. Our own and others’ research suggests that the design and building of computer games, if
done with appropriate guidance and appropriate game development tools, leads children to develop and
show evidence of the use of CT skills (Denner & Werner, 2011; Denner, Werner, & Ortiz, 2012; Werner,
Denner, Campe & Kawamoto, 2012; Werner et al., 2012; Repenning, Webb, & Ioannidou, 2010; Resnick
et al., 2009).

In this chapter, we describe how making a computer game can engage middle school students in CT. We
offer a framework that we developed to evaluate students’ games for CT, and include examples of how
to identify different aspects of CT in specific games, such as problem solving, algorithms, modeling, and
abstraction. Finally, we describe best practices that instructors can use to increase the likelihood that
computer game programming will involve CT.

Key Frameworks

The research in this chapter builds on prior studies in the areas of complex problem solving and novice
programming. The creation of computer games can be a complex problem solving activity and one
that young students are capable of doing. Designing and programming a game is what Jonassen (2000)
has described as a “design problem” that is ill-structured, requiring the student to define the goal, the
solution path, and how to evaluate the solution. For example, most games include the key features of

39

complex problem solving that were identified by Quesada, Kintsch, & Gomez (2005). These include
tasks that are: 1) dynamic (each action changes the environment), 2) time dependent, and 3) complex
(requires a collection of decisions that determine later ones). To study these features, research must look
at how students attempt to solve problems—what they do when they are faced with situations that are
dynamic (each action changes the environment), time dependent (use timers to enhance the gameplay
experience) and complex (decisions made early in the game determine later decisions).

Historically, the first programs students create are not considered complex systems since they are not
dynamic, not time dependent, and not complex. These first programs typically do not focus on the
user of the program. Instead, these programs implement small, but highly constrained, computational
tasks, such as adding integers or displaying the words “Hello World.” With the advent of powerful,
yet simple-to-use, novice programming environments such as Alice and Scratch, young students can
create their own dynamic systems—computer games—and in doing so, the students focus on the user
or game player, of their creations.

Our effort to understand what children learn by programming games is based on decades of studies.
For example, research on the development of programming knowledge has described developmental
progressions. Both Linn (1985), with her “chain of accomplishments” example, and Robins, Rountree,
& Rountree (2003) describe three dimensions that can be used to distinguish between effective and
ineffective computer programming novices:

1. Knowledge: The knowledge of design, language, and debugging tools;
2. Strategies: The strategies for design, implementing the program using

a programming language, and debugging; and
3. Models: The mental models of the problem domain, the desired program,

and the actual program.

These three dimensions—knowledge, strategies, and models—provide a useful framework for identifying
the types of thinking that a student engages in while programming. While these dimensions sometimes
overlap, Robins et al. (2003) suggest thinking of them as stages in the process of acquiring programming
skills, and within each stage, students progress through the phases of designing, generating, and
evaluating their program.

Research on children programming games and digital stories has focused less on progressions and more
on the computer programs the children create. These efforts typically focus on the use of programming
constructs, which are one of the fundamental computer science building blocks that are accessible to
students in novice programming environments (Denner & Werner, 2011; Brennan & Resnick, 2012). Most
of these studies have summarized which programming constructs appear in students’ final programs,
but do not distinguish between programming constructs that have been successfully or unsuccessfully
used. The analysis of computer programs created by children done by Werner, Campe, & Denner (2012)
is important because it relies not only on the presence of a programming construct, but also analyzes

40

its use. This analysis determines whether the programming construct is reachable along some program
path and whether the construct, when executed, causes abnormal program execution.

We propose a new framework for analyzing how children develop CT skills during computer game
programming called “Game Computational Sophistication” that has been informed by the work by
Jonassen (2000), Quesada et al. (2005), Linn (1985) and Robins et al. (2003). This framework emerged
from our analysis of student games, and accounts for multiple levels of complexity that go beyond
programming constructs to look at whether game programmers are creating complex systems. At the
simplest level of the framework, are the elementary code pieces of students’ games or programming
constructs. These include a programming language’s instruction set, and what are typically described
in studies of how computer game programming can teach students higher order thinking.

At the next level of computational sophistication, students put together multiple programming
constructs to create instances of “patterns,” which are higher order computer science building blocks
that use combinations of programming constructs. Patterns create additional program functionality but
may or may not be contiguous segments of code. Expert programmers have libraries of these patterns,
sometimes called “plans,” from which to build their programs (Brooks, 1977; Pea & Kurland, 1984;
Jeffries et al., 1981; Ehrlich & Soloway, 1984). Software engineers call these plans “design patterns,”
based on the work by Alexander (1997) who writes they “provide a common vocabulary for design, they
reduce system complexity by naming and defining abstractions, they constitute a base of experience
for building reusable software, and they act as building blocks from which more complex designs can be
built (Gamma et al., 1993).” It is suggested by Kreimeier (2002) that game developers “make a sustained,
conscious effort to define and describe the recurring elements of their daily work … so we can begin
to create software tools made or adapted specifically for game design purposes.” The identification
of game design patterns creates a common language for both designing and analyzing games
(Holopainen & Bjӧrk, 2003). Repenning and his colleagues describe patterns at the level of phenomena
(e.g., collision, transport, and diffusion), and they explore whether students can transfer the use of
those patterns to other applications (Ioannidou, Bennett, Repenning, Koh, & Basawapatna, 2011). While
these authors have advanced our understanding of how to think about and identify patterns, studies
examining the incomplete, successful, and unsuccessful patterns used to create games developed by
middle school youth are nonexistent.

At the highest level, the game computational sophistication includes “game mechanics,” which are a
combination of programming constructs and patterns. They are used to make the game fun to play and
to challenge the player. Game mechanics are the actions, behaviors, and control mechanisms that are
available to the player (Hunicke, LeBlanc, & Zubeck, 2004) and provide the kinds of actions that the
player must take to move gameplay along. Sicart (2008) provides a definition of game mechanics that
is useful for game analysis: “methods invoked by agents, designed for interaction with the game state…
something that connects players’ actions with the purpose of the game and its main challenges.” In
other words, the game designer must engage in complex problem solving to create rules, interactions
between the rules, and the mechanics (the game pieces that provide the interactivity for the player) to

41

address a challenge or set of challenges within the game. We know of no studies of games that identify
game mechanics in games developed by youth. Discussions with game design experts and researchers
have advanced our understanding of how to think about and identify game mechanics. Similar to
the research on programming constructs and patterns, we are not familiar with any research that
has examined the properties of incomplete, successful, and unsuccessful game mechanics in games
developed by youth.

Key Findings

In this section, we describe how we used the Computational Sophistication framework to understand
how computer game programming can teach children computational thinking skills. To assess the
computational sophistication of the students’ games, we first identified the programming constructs,
patterns, and game mechanics that are possible given the programming environment used, and then
analyzed the games’ program codes for instantiations of these three types of computer game building
blocks. The differences lie in the number and computational sophistication of the programming
constructs and patterns used, the number of mechanics, as well as the complexity of the integration of
constructs into patterns, patterns into mechanics, and the integration between the mechanics.

The study took place in technology elective classes during or after school at seven public schools
in California. Three hundred and sixty-five middle school students using the Alice programming
environment made the games. Over a two-year period, we offered our entire Alice curriculum 16
different times, each over a semester. Classes were randomly assigned for students to work on their
games in a pair or by themselves. Students spent approximately ten hours learning to use Alice by
following worksheets with step-by-step instructions to introduce programming constructs, and another
ten hours programming their games. Students chose the content of their games with the limitations
being that the content is appropriate for school, as defined by their teacher; that the game is interactive,
has a player outcome, and includes player instructions. A total of 231 games were created.

The games were analyzed for the following Alice programming constructs, presented in order from
least to most sophisticated: do in order statement, do together statement, simple event handlers, built-in
functions, set statement, more sophisticated event handlers, student-created methods, student-created
and non-list variables, if/else statement, loop statement, while statement, student-created parameters,
student-created functions, student-created list variables, for all in order statement, for all together
statement, nested if/else statement.

For patterns, we identified the following 15 patterns in the student-created games, again listed from
least to most sophisticated (see Table 1). The last column shows the percentage of the 231 games that
included each pattern.

42

Table 1. Patterns

Pattern Pattern Description %

Parameters Setting parameters such as font size, as seen by (but not duration) available
for all built-in methods

35.5%

Sound Use of audio sounds not built into Alice methods 13.9%

Movement Controlling object or camera movement with key or mouse 19.5%

Manipulating subparts Programming subparts of an object to change during the game (e.g., arm of
one character hits another and just their head falls off)

25.5%

Instructions Instructions are programmed via 3D text, methods 71.9%

Phantom objects Using not-in-view objects to move and position other objects 4.3%

Embedded methods Student-created method that is embedded within another method 27.3%

Dialog box Player is asked for input, input is read in, and program uses the input 15.6%

Vehicles Vehicle property is used so that when the vehicle object moves, an attached
object moves in unison with it

21.2%

Collision There is a program action depending on the distance one object is from
another

21.2%

Camera control Changing the view according to movement or player input within one
scene

39.4%

Scene change Programming movement to and from different scenes 12.6%

Counters Integer variable created and initialized, variable’s value incremented or
decremented, and threshold value of variable triggers additional action

7.8%

Timers Integer variable created and initialized, variable’s value changed as time
passes, and threshold value of variable triggers additional action

9.5%

List processing List variables are created and used with For all in order or For all together 2%

We identified the following 11 game mechanics in the student-created games (see Table 2) based on
discussions with game design experts and researchers (A. Sullivan, G. Smith, T. Fristoe & L. McBron,
2011) and by analyzing the students’ games. We have found that there was a range of computational
sophistication, based on programming constructs and patterns used, to build each of these game
mechanics. The last column shows the percentage of games that included each game mechanic.

43

Table 2. Game mechanics

Game Mechanic Game Mechanic Description %

Collecting Player attempts to accumulate objects to advance in game. 19.9%

Timed Challenge Player is given a time limit to complete game task. 11.3%

Exploration Player moves an object or the camera to find objects beyond player’s initial
range of view. Movement is not restricted to occur along a designated path.

13.0%

Shooting Player shoots at object; actual projectile must be present. 2.6%

Racing Player moves object across a finish line within time limit or moves an
object in competition with other objects.

3.9%

Guessing Player answers questions via clicking, typing, or moving an object. 22.9%

Hidden Objects Player searches for an object that is hidden either beyond view or “hidden
in plain sight.”

6.1%

Navigation Player moves object and/or camera from one location to another known
location often on a designated path.

16.5%

Levels Player moves between at least 2 stages by gathering points or fulfilling a
challenge.

2.2%

Avoidance Player moves object to avoid either stationary or moving obstacle based on
player proximity to obstacle. Feedback to proximity is required.

3.5%

Hitting Moving Objects Player attempts to click on moving object or moves something (character,
object, camera) closer to a moving target to prompt another action.

5.6%

To illustrate what our Computational Sophistication Framework looks like when applied to games,
specifically to illustrate a range of sophistication in what these patterns and mechanics look like, we
have included two case studies (see case study section).

44

Case Study: M808 Super Battle Tank

One of the more computationally sophisticated games created by the middle school students in our
study was made by a pair of boys, titled M808 Super Battle Tank. The students use eight unique patterns
to implement three different game mechanics (Collecting, Timed Challenge, and Exploration). The
student programmers use two additional patterns to enhance the visual aspects of the game. The game
instructs the player to drive a tank around a city (the Exploration game mechanic) to find and destroy
seven cars by clicking on them to start fires (the Collection game mechanic) within a particular time
limit (the Timed Challenge game mechanic). A “win” message appears if the player destroys seven cars
within the allotted time; a “lose” message appears if the time runs out and seven cars are not destroyed.

In Table 3 are listed each of the patterns used to implement each of the game mechanics found in
M808 Super Battle Tank. To demonstrate the detail collected during our analysis, Table 3 also includes
the more sophisticated programming constructs that students used to implement patterns for their
Collecting game mechanic. The programming constructs have been italicized in the Collecting Game
Mechanic column.

The “Instructions” pattern is part of this game’s three game mechanics since the instructions are
needed to inform the game player what items to collect (part of the Collecting game mechanic), inform
the game player that only three minutes are given to complete the collecting (part of the Time Challenge
game mechanic), and inform the game player to move around the scene to find the cars (part of the
Exploration game mechanic).

45

Table 3. The integration of patterns and mechanics in M808 Super Battle Tank

Pattern Collecting Game
Mechanic

Timed Challenge
Game Mechanic

Exploration Game
Mechanic

Instructions Destroy 7 cars Destroy 7 cars within 3
minutes

Move around city to see
cars

Vehicles Camera using tank as
vehicle

Camera Control Player seeing back of tank
while moving around
game scene

Embedded methods Blow up cars, counting,
etc.

Check count of how many
cars are blown up, win and
lose messages, etc.

Phantom objects Placement of instructions Placement of instructions Placement of instructions

Timer Destroy 7 cars within time
limit

Move around to destroy
7 cars

Counter Count the number
of cars collected (i.e.,
clicked on) as you move
through scene. Uses
variables, student-created
methods, simple and
more sophisticated event
handlers, set statement,
and built-in functions.

Destroy 7 cars within time
limit.

Parameters Car blowing up style is
abrupt; for look and feel

Manipulating subparts Tank’s turret is turned; for
look and feel

Key/mouse control Tank’s turret is moved.
Uses simple event handlers.

46

Case Study: Fishy Attack

Fishy Attack, made by a girl working alone, is a game showing a mid-range level of computational
sophistication. It has two game mechanics, “Collecting” and “Timed Challenge,” which the student
implemented using four distinct patterns (see Table 4). The student programmed the Timed Challenge
mechanic using only the Instructions pattern. The student programmed a monkey to give instructions
using the say built-in method call and modified the duration parameter’s default value of the say to
keep the instructions on the screen for five seconds giving the player more time to read each of the
instructions. The student also programmed a print programming construct that persistently displays
“click on all the fishy…” below the game scene. It is important to note that the student used simple event
handler programming constructs to make the fish invisible when collected. The use of simple event
programming to accomplish this collecting does not constitute the use of a pattern.

Table 4. The integration of patterns and mechanics in Fishy Attack

Pattern Collecting Mechanic Timed Challenge Mechanic

Instructions Click on all fish. Uses simple event handlers. Click on all fish within 40 seconds.

Embedded methods All remaining fish sink underwater.

Timer Click on all fish within 40 seconds.

List processing All remaining fish sink underwater in unison.

The opening screen shot for Fishy Attack is shown in Figure 1. After the monkey on the island says,
“Can you please help me get off this island,” the player is instructed to “click on all the fishy” (the
Collecting game mechanic) before they drown (the Timed Challenge game mechanic). As the player
clicks on fish, they disappear and are saved. Unfortunately, there is no code for one of the fish to
disappear when the player clicks on it; therefore, there is no way to win by saving all the fish from
drowning. It is unclear if this was the intent of the student. When the time runs out and the player has
not succeeded in saving all of the fish from drowning, all the unsaved fish sink underwater.

Figure 1. Opening screen shot for Fishy Attack

47

Assessment Considerations

Game-based assessment techniques such as we have described with our game computational
sophistication framework provide only one strategy for measuring computational thinking skills. Their
contribution is that they allow a quantifiable measure of definable aspects of CT, and we can say with
reasonable confidence that the students engaged in those aspects. The games themselves cannot tell
us how deeply the students engaged in those aspects of CT, however, or why the students included or
did not include certain features—whether it was due to the complexity of the programming construct or
pattern, or to a lack of interest in having that particular feature in their game. A more comprehensive
picture of CT skills requires additional assessments, such as a test of students’ knowledge transfer, or
the collection of more in-depth, qualitative data from both students and teachers.

For example, Werner et al. (2012) measured transference of CT skills with the Fairy Assessment,
which is an Alice game that students play solving increasingly more sophisticated CT problems by
adding, debugging, and modifying the Alice programming code. More than 300 middle school students’
solutions were scored resulting in a range of CT skills. Administration of the assessment was not costly;
however, scoring of the solutions was time-consuming. Burke & Kafai (2012) analyzed Scratch programs
created by ten inner city middle school youth enrolled in a digital storytelling class. Regarding CT
skills, they found widespread use of concepts such as loops and event handling but only limited use
of the more sophisticated programming concepts such as conditionals, Boolean logic, and variables.
Limitations include concerns about what students were able to do on their own without help from
others. Additionally, their study involves only a small number of students.

In another example, Repenning et al. (2010) have begun the analysis of games students have created
using AgentSheets looking for the presence of CT skills. Middle and high school teachers involved in
their projects report high student engagement. Limitations include whether demonstrated CT skills are
transferable. The researchers have identified next steps such as to show that the students’ game building
skills are transferable to other areas of STEM education. The researchers have built an inventory of
higher-level CT patterns used in game development. Their next step is to show use of these patterns in
computational biology and chemistry simulations and robotics applications.

Brennan & Resnick (2012) have developed the most comprehensive assessment package for Scratch
projects. This consists of three parts: 1) Automated project portfolio analysis, 2) Interviews about
artifacts created, and 3) Design scenario-based testing. These researchers have identified limitations of
this assessment package, repeating concerns of what students are able to do on their own when looking
at the results of the automated project portfolio analysis. They reported the interview portion of the
assessment is time-consuming, taking one to two hours per interview. Additionally, the researchers
believe this portion of the assessment package would benefit from multiple interviews per student
occurring progressively during the project development period. The design scenario part of the
assessment package, similar to the Fairy Assessment described above, is time-consuming in delivery.

48

Future Needs

Computer game programming can teach CT skills, and we have begun to identify the kinds of
computational thinking that middle school students engage in while making their personal choice of
games with the Alice programming environment. There are limitations to our work, such as:

1. The Computational Sophistication Framework was developed by analyzing games created
in Alice and needs to be tested on games created with other tools to see if the distinction
between constructs-patterns-mechanics makes sense and to see if other patterns or
mechanics emerge.

2. The findings need to be compared against other measures of CT collected from the same
students to ensure their reliability.

3. The findings do not contribute to efforts to understand CT learning progressions,
and further work is needed to determine whether certain patterns (or mechanics)
are more sophisticated than other patterns (or mechanics) and whether there is a range
of sophistication in how patterns or mechanics are used.

4. For this approach to be used by teachers, the assessment and analysis needs to
be automated.

Case Study: Scratch as a Path to Programming
(written by Lucas Crispen and Elizabeth LaPensée)

Scratch (scratch.mit.edu/) is a graphical programming language and development environment that is
an accessible, effective, and engaging way to teach coding. It has been particularly accessible for middle
school and high school students at the Self-Enhancement Academy Inc. (SEI), a non-profit organization
supporting disadvantaged youth through a full-time middle school and after-school program. This case
study describes the application of Scratch in a programming class at SEI taught alongside a partnership
with Pixel Arts Game Education (www.gameeducationpdx.com/), a non-profit dedicated to reducing
the barriers of access to game development technology and education. Experiences with Scratch are
based on three middle school classes and one high school class taught across Fall 2013, Winter 2014, and
Spring 2014 with individual class sizes ranging between five and fifteen youth.

Initially, Lucas Crispen—a game programmer with professional industry experience and academic
experience in teaching and developing curriculum for weekend and summer classes and camps in
digital media and game programming—was brought in to teach a general coding class. SEI selected
Code Academy (www.codeacademy.org) due to its robust curriculum, and while it is excellent overall
for teaching Javascript and web design, it failed to meet the needs of SEI’s youth. Foremost, youth
faced a learning curve since they had little to no prior programming experience, brought on by limited
computer access outside of SEI classrooms. Many youth were intimidated by screens of code and self-
defeating when encountering issues.

49

Based on these concerns, as well as a desire to better engage youth in an after-school programming
class with no mandatory attendance or grade system, Crispen developed a curriculum around the
visual programming environments Scratch and SNAP (a visual drag-and-drop programming language,
snap.berkeley.edu). He noticed an immediate improvement in the engagement level of youth as well as
the speed with which they were able to pick up basic programming concepts.

The curriculum involves nine weeks of two one-hour sessions each week, beginning with open-ended
discussions about programming and simple exercises in SNAP and Scratch. In Weeks two and three,
youth learn how to manipulate sprites, learn about the 2D coordinate system by drawing shapes and
patterns with the pen tool, and engage in simple conditionals and loops while making a simple line-based
Snake-like game with user input. Week 4 invites experimentation and excites youth by encouraging
“hacking.” The students play games from the Scratch community, identify how these games function
based on previous lessons, and then “hack” the code of these games to adjust the difficulty level and/or
change graphics or sound, which is well-supported by Scratch’s “Remix” functionality.

The remainder of the curriculum reinforces core concepts including compound logic, multi-case
conditionals, and conditional loops as youth make their own maze games and elevate to making their
own versions of Flappy Bird, through cycles of development, playtesting, and iteration with other youth
in the class. Youth were especially engaged by contributing to the Flappy Bird “clone” community and
reinforced skills established earlier.

When using Scratch in programming curriculum, there is room for improvement in terms of
performance. Scratch has performance issues on older computers, which is a concern for institutions
and organizations with restricted technology funding. The browser version of Scratch also requires
reliable Internet connections and speed. This can result in frustration for youth and for instructors
working within limited class time.

Overall, Scratch is successful in achieving STEM outreach by establishing concepts and enthusiasm
reinforced by integrating popular games throughout curriculum. Scratch’s visual nature avoids many
of the language difficulties associated with learning traditional programming and allows students to
focus on developing computational thinking skills and understanding core concepts. From a game
development perspective, it provides an easy introduction to handling keyboard and mouse inputs, as
well as a simple sprite-based system for drawing objects on the screen.

Since Scratch does not currently convert visual programming to existing programming language, it is
best implemented as a path to understanding foundations that can be followed-up by a tool like Stencyl
(www.stencyl.com/), which is currently used in the game development classes by Pixel Arts Game
Education. Youth in the programming classes are able to directly correlate their experience designing a
game with the classic Snake mechanic, a maze game, and a Flappy Bird clone to more advanced steps
for designing their own self-determined games.

50

Best Practices

Based on our findings (Campe, Denner, & Werner, 2013), the following principles should guide teachers
on how to use computer game programming to develop and engage students in computational thinking
skills:

1. Curriculum: Schedule technology modules into your class. The entire Alice curriculum
fits well into one semester’s schedule of four hours of class meetings per week.

2. Technology: Choose one of the novice programming environments (Kelleher & Pausch,
2005). Alice and Scratch are the most popular and the CSTA publishes lists of resources for
both of these programming environments for teachers to use in their K-12 classrooms.

3. Teacher Prep: Understand the range of computational sophistication involved in making
different types of games using tables such as those we have given in this chapter for
patterns. Understand the types of games that same-age students are interested in making
to assist students in determining personal interest (Denner, Ortiz, Campe, & Werner, 2014).

4. Pedagogy: Guide the students to make the more sophisticated types of games.
For example:

a. Provide examples of more sophisticated games made by same-age students.
b. Provide scaffolding to students for learning the novice programming

environment and learning key constructs and patterns for game design
and creation (Campe et al., 2013; Campe, Werner & Denner, 2012;
Webb & Rossen, 2013).

c. Guide students to design and create a practice game first. This activity
motivates students to learn more sophisticated programming constructs,
patterns, and game mechanics.

d. Include student, teacher, and peer review activities of students’ games to
provide feedback highlighting game functionality and usability issues (such as
that seen in the second case study with a “no win” situation). These can be done
as group, pair, or individual activities and can be done at various points during
the game development process.

Resources

Websites and Reports

National Research Council. Report of a Workshop on the Scope and Nature of Computational Thinking.
Washington, DC: The National Academies Press, 2010.
National Research Council. Report of a Workshop on the Pedagogical Aspects of Computational Thinking.
Washington, DC: The National Academies Press, 2011.
CSTA/ISTE CT resources (https://csta.acm.org/Curriculum/sub/CompThinking.html)
Alice website (http://www.alice.org/)
Scratch website (http://scratch.mit.edu/)

SNAP website (http://snap.berkeley.edu/)

51

References

Alexander, C. (1979). The timeless way of building (Vol. 1). Oxford University Press.
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is involved and what is the role of

the computer science education community? ACM Inroads, 2(1), 48-54.
Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of

computational thinking. In Proceedings of the 2012 annual meeting of the American Educational Research
Association, Vancouver, Canada.

Brooks, R. (1977). Towards a theory of the cognitive processes in computer programming. International Journal of
Man-Machine Studies, 9(6), 737-751.

Burke, Q., & Kafai, Y. B. (2012, February). The writers’ workshop for youth programmers: digital storytelling with
scratch in middle school classrooms. In Proceedings of the 43rd ACM technical symposium on Computer
Science Education (pp. 433-438). ACM.

Campe, S., Denner, J., & Werner, L. (2013). Intentional computing: Getting the results you want from game
programming classes. In Journal for Computing Teachers. Retrieved on September 8, 2013 from http://
www.iste.org/store/product?ID=2850

Campe, S., Werner, L., & Denner, J. (2012). Game programming with Alice: A series of graduated challenges. In
P. Phillips (Ed.), Special Issue Computer Science K-8: Building a Strong Foundation. Computer Science
Teachers Association.

CSTA Standards Task Force. (2011). K-12 computer science standards. Retrieved on January 5, 2014 from http://
csta.acm.org/Curriculum/sub/CurrFiles/CSTA_D-12_CSS.pdf.

Denner, J., Ortiz, E., Campe, S., & Werner, L. (2014). Beyond stereotypes of gender and gaming: Video games made
by middle school students. In H. Agius & M. Angelides (Eds.), Handbook of Digital Games. Institute of
Electrical and Electronic Engineers.

Denner, J., & Werner, L. (2011, April). Measuring computational thinking in middle school using game
programming. Annual Meeting of the American Educational Research Association. New Orleans, LA.

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be used to
measure understanding of computer science concepts? Computers & Education, 58(1), 240-249.

Ehrlich, K. & Soloway, E. (1984). An empirical investigation of the tacit plan knowledge in programming. Human
Factors in Computer Systems. Norwood, NJ: Ablex Publishing Co.

Game mechanics (n.d.). Retrieved on June 25, 2013 from the Wikipedia Web site: http://en.wikipedia.org/wiki/
Game_mechanics.

Game Mechanics (n.d.). Retrieved on June 25, 2013 from the Gamification Wiki: http://gamification.org/wiki/
game_Mechanics.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design patterns: Abstraction and reuse of object-oriented
design. Springer Berlin Heidelberg.

Holopainen, J., & Björk, S. (2003). Game design patterns. Lecture Notes for GDC.
Hunicke, R., LeBlanc, M., & Zubek, R. (2004, July). MDA: A formal approach to game design and game research.

In Proceedings of the AAAI Workshop on Challenges in Game AI.
Ioannidou, A., Bennett, V., Repenning, A., Koh, K.H., & Basawapatna, A. (2011). Computational thinking patterns.

American Educational Research Association conference, New Orleans.
Jeffries, Robin, Turner, A., Polson, P., & Atwood, M. (1981). The processes involved in designing software. In J.R.

Anderson (Ed.),. In Cognitive skills and their acquisition (pp. 255-283). Hillsdale, NJ: Erlbaum.

52

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational technology research and
development, 48(4), 63-85.

Kelleher, C. & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming
environments and languages for novice programmers. ACM Computing Surveys (CSUR), 37(2), 83-137.

Kreimeier, B. (2002). The case for game design patterns. Retrieved on March 16, 2011 from http://www.gamasutra.
com/view/feature/132649/the_case_for_game_design_patterns.php?print=1.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., & Werner, L. (2011).
Computational thinking for youth in practice. ACM Inroads, 2(1), 32-37.

Linn, M. C. (1985). The cognitive consequences of programming instruction in classrooms. Educational
Researcher, 14(5), 14-29.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming. New Ideas in
Psychology, 2(2), 137-168.

Quesada, J., Kintsch, W., & Gomez, E. (2005). Complex problem-solving: a field in search of a definition?.
Theoretical Issues in Ergonomics Science, 6(1), 5-33.

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the development of a checklist for
getting computational thinking into public schools. In Proceedings of the 41st ACM technical symposium
on Computer science education (pp. 265-269). ACM.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, J.,
Silverman, B., & Kafai, Y. (2009). Scratch: programming for all. Communications of the ACM, 52(11), 60-67.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review. Computer Science
Education, 13(2), 137-172.

Selby, C. (2013). Computational thinking: the developing definition. (Submitted). In, The 18th Annual Conference
on Innovation and Technology in Computer Science Education, Canterbury, GB, 01-03 Jul 2013

Sicart, M. (2008). Defining game mechanics. Game Studies, 8(2).
Soloway, E. (1986, September). Learning to program = learning to construct mechanisms and explanations.

Communications of the ACM 9, 850-858.
Webb, H., & Rosson, M. B. (2013, March). Using scaffolded examples to teach computational thinking concepts. In

Proceedings of the 44th ACM technical symposium on Computer science education (pp. 95-100). ACM.
Werner, L., Campe, S., & Denner, J. (2012). Children learning computer science concepts via Alice game-

programming. In Proceedings of the 43rd. ACM conference on Computer Science Education (SIGCSE 2012).
Feb. 29-Mar. 3, Raleigh, N. Carolina, USA.

Werner, L., Denner, J., Campe, S. & Kawamoto, D.C. (2012). The Fairy Performance Assessment: Measuring
computational thinking in middle school. In Proceedings of the 43rd. ACM conference on Computer
Science Education (SIGCSE 2012). Feb. 29- Mar. 3, Raleigh, N. Carolina, USA.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

53

Acknowledgments
Our thanks go to the teachers and administrators at our seven schools, specifically Anne Guerrero, Shelly
Laschkewitsch, Don Jacobs, Sue Seibolt, Karen Snedeker, Susan Rivas, and Katie Ziparo. Thanks also to
teaching assistants, Will Park, Chizu Kawamoto, and Joanne Sanchez; and to Pat Rex and Eloy Ortiz, for
instructional materials design and technology support. Thanks to Dominic Arcamone, Stephen Butkus, Melanie
Dickinson, Anthony Lim, and Kimberly Shannon for their game analysis work. Thanks to all of the students
who participated. This research is funded by a grant from NSF 0909733 “The Development of Computational
Thinking among Middle School Students Creating Computer Games.” Any opinions, findings, conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the views of
the National Science Foundation.

