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ABSTRACT

This study explores transparency in a command and control (C2) context,
using a low-fidelity air traffic control game, which is real-time, dynamic,
and time constrained. Autonomous agent performance,
anthropomorphism, and other factors have been a major focus in
studying trust in human-autonomy teaming (HAT). We propose that agent
predictability may be an important area of investigation. Where autonomy
is imperfect, increasing its predictability may reduce the incidence of
mistrust and dis- use. Indeed, we suggest that predictability is a
quintessential indicator of agent transparency, which we propose to
encapsulate in a model of trust that is based on predictability. We
speculate that cognitive fit and cognitive fit theory may have a large role to
play in enabling predictability. This has implications for transparency
design in self driving cars, domestic household robots, as well as other
industrial applications where autonomous systems and agents are used.
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1 BACKGROUND

Anthropomorphism has long been a focal point in human-autonomy
teaming (HAT), with researchers investigating etiquette (Parasuraman &
Miller, 2004), apologies (M. C. Cohen, Demir, Chiou, & Cooke, 2021; Galdon
& Wang, 2019), and compensation behaviours (De Visser, Pak, & Shaw,
2018; Rebensky et al., 2021). While these studies attempt to investigate if
humans attribute human moral qualities to their autonomous team-mates,
there may be another key factor which could be interesting. Embedded
in these studies is the implicit notion of predictability being beneficial for
trust.

For example, Parasuraman’s etiquette paper concludes that expected
interruptions from autonomy (i.e. polite error messages) are beneficial for
trust (Parasuraman & Miller, 2004). De Visser’s transactional model for
trust violation and repair suggests that trust violations can come from
unexpected behaviours of autonomy, even if the unexpected behaviour
had some benefit for the human team-mate (De Visser et al., 2018). This
accords with the well established notion that transparency can mitigate
the effects of imperfect autonomy (Hoff & Bashir, 2015; O’Neill, McNeese,
Barron, & Schelble, 2022)

2 EXTENDED BACKGROUND
2.1 TRUST IN AUTONOMY

Parasuaraman et. al. set out the broad issues surrounding humans and
autonomy (Para- suraman & Riley, 1997). Although they were describing
tool-like automation, these issues are still relevant for teammate-like
autonomy. Trust in autonomy is a key factor in determining how a human
will utilise autonomous technologies, so it is a very important focus in the
field of HAT. The most obvious, and the primary moderator of trust is the
reliability and performance of the autonomy itself (Baker, Phillips, Ullman,
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& Keebler, 2018; Chen, Barnes, Selkowitz, & Stowers, 2016; M. S. Cohen,
Parasuraman, & Freeman, 1998; Endsley, 2017; Hancock et al., 2011; Hoff
& Bashir, 2015; Ososky, Schuster, Phillips, & Jentsch, 2013; Parasuraman &
Riley, 1997; Schaefer, Chen, Szalma, & Hancock, 2016). However, the very
nature of technology means that we will often be dealing with imperfect
autonomy.

There are also many other factors that influence trust, including
anthropomorphism, group membership and organisational factors (Baker
et al., 2018; Hoff & Bashir, 2015). These are important and should be
mentioned, however they are not the focus of our study.

2.2 TRUST CALIBRATION

When dealing with imperfect autonomy, it is important to be able to know
how much it can be trusted or it will be used improperly (Parasuraman,
1997; Cohen, 1998; Dzindolet, 2003; Lee, 2004; McBride, 2010). Broadly,
this kind of managed trust in automation is termed as “trust calibration”. If
the autonomy is visibly unreliable, the user may simply disuse it and do the
entire task manually themselves (Freedy, DeVisser, Weltman, & Coeyman,
2007; Parasuraman & Riley, 1997). This is undesirable as it may lead to
lower overall task performance because the user discards all advantages
provided by the automation (Dzindolet, Peterson, Pomranky, Pierce, &
Beck, 2003; Lee & See, 2004; Wright, Chen, Barnes, & Boyce, 2015). Lee &
See succinctly describe trust calibration as being the correct assignment of
trust levels given the capabilities of the automation (Lee & See, 2004).

For clarity, ‘misuse’ is defined as over-reliance on automation or overtrust.
‘Disuse’ is defined as an underutilisation of automation and an under-
reliance on automation or undertrust. Disuse and misuse had specifically
been identified by Parasuraman (Parasuraman & Riley, 1997) and these
definitions have been broadly adopted by the HAT community. Both
‘disuse’ and ‘misuse’ are undesirable outcomes, and transparency has been
shown to mitigate them by enabling trust calibration. A clear example
of this was demonstrated by Furukawa and Parasuraman in their
experiments with aviation automation (Furukawa & Parasuraman, 2003).
When they deliberately introduced delays or errors in the automation’s
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notification capabilities, pilots were able to predict or identify imminent
engine failures simply by using the provided transparency information.
Seong & Bisantz (2008) also found similar results in their aircraft
identification decision aid study; showing performance benefits for
unreliable automation that have transparency information available.
Similarly, Wang et. al (2016) found that users were able to correctly reject
an automated teammate’s recommendation based on the teammate’s
observation explanations alone.

There are many more experimentally demonstrated examples of
transparency being successfully used for trust calibration, as cited by
previous survey works (Hancock et al., 2011; Lee & See, 2004; McBride &
Morgan, 2010; Seong & Bisantz, 2008; Westin, Borst, & Hilburn, 2016). The
overarching paradigm here is not to increase trust in automation overall,
but to give the user enough context to be able to assign the correct level
of trust given the dynamic circumstances (Cohen et al., 1998; Lee & See,
2004). Imperfect autonomy is assumed.

2.3 TRANSPARENCY

Transparency is a critical component in forming trust in human autonomy
teaming (HAT) (Baker et al., 2018; Endsley, 2017; Freedy et al., 2007;
Hancock et al., 2011; Hoff & Bashir, 2015; Lyons, 2013; Ososky et al., 2013;
Parasuraman & Miller, 2004; Parasuraman & Riley, 1997; Schaefer et al.,
2016). By allowing the user some insight into the autonomy’s reasoning
and “state of mind”, transparency holds the key to mitigating or correcting
errors caused by the imperfect autonomy (Baker et al., 2018; Chen et al.,
2014; Lyons, 2013; Ososky et al., 2013; Schaefer et al., 2016; Selkowitz,
Lakhmani, & Chen, 2017; Wright et al., 2015). Even when there are no
errors, but the behaviour is unexpected or unintuitive to the user,
transparency has an important role in forming a user’s trust in the machine
(De Visser et al., 2018; Endsley, 2017; McBride & Morgan, 2010;
Parasuraman & Riley, 1997).

A quick and simple example of transparency would be displaying the
intended pathway of a self-navigating vehicle. Another would be a symbolic
representation of what a computer vision (CV) agent is seeing, where
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detected objects are clearly annotated. In either example, a user will be
able to see the agent’s intentions and any flaws in its reasoning. If the
agent plots a course through a dangerous obstacle, or if the agent wrongly
classifies a critical object, the user will have the opportunity to enact
appropriate countermeasures to avoid failures. In the case where failures
do occur, the user will have some level of explainability as to why it
occurred and avoid such occurrences in the future.

It must be noted that transparency is not limited to graphical formats, as in
the previous examples. Verbal and written natural language and audio are
also common channels of communication (Hoff & Bashir, 2015; Lee & See,
2004). Haptic feedback is not as prominent but exists in some specialised
contexts such as telerobotics (Brown & Farkhatdinov, 2021; Preusche &
Hirzinger, 2007).

Generally, transparency is the mechanism by which we understand the
actions of the autonomous agent. However, the term should not be
misconstrued as simply the mass of information given to the human. Too
much information will actually result in less transparency, as the human
reaches their cognitive load limits, impeding their performance.

2.4 COGNITIVE CONSIDERATIONS IN HAT

Whenever the machine needs to send information to the user, they will
inevitably incur a cognitive cost for receiving it. Be it reading a dial, or
interpreting a graph, or even listening to voice output, the user will need
to spend some of their cognitive capacity to absorb this information. This
has been the motivating factor in Ecological Interface Design (EID) theory
(Furukawa & Parasuraman, 2003; Westin et al., 2016) but has not been the
focus of HAT research. However, there are some relevant studies.

Cummings et. al. were interested in this area and demonstrated the upper
bounds of human cognitive capacity in monitoring tasks (Cummings &
Guerlain, 2007; Cummings & Mitchell, 2008). Interestingly, when using a
“utilization” metric (percentage of busy time), they found that task
performance stopped improving at around 50-60%, as shown in Figure
1. This suggests that at lower utilisation rates, the user simply was not
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sufficiently engaged in the task to achieve their best results. Interestingly, it
also clearly demonstrates that user performance is significantly affected as
the user approaches their cognitive load limit.

Figure 1: Cummings and Guerlain demonstrate a ”cognitive hump”, where performance
peaks at 60% utilisation (Cummings & Guerlain, 2007). Human performance degrades
after reaching a cognitive limit.

Chen et. al. have also found a similar “hump” for situational awareness (SA)
and trust. In their experiments, each additional transparency layer resulted
in improved trust and SA, until they reached SA1 2 3 U (Chen et al., 2016;
2014). Once the uncertainty information was added to the mix, SA and trust
was comparable to when transparency was at SA1 2 only. It is reasonable to
attribute this to the user reaching their cognitive limit, given the results of
Cummings et. al. (Cummings & Guerlain, 2007; Cummings & Mitchell, 2008)
and the general motivations of Ecological Interface Design (EID) theory.
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Figure 2: Situational Awareness and trust fall after SAT 1 + 2 + 3 is presented to the user
(Chen et al., 2016, 2014). Human performance degrades after reaching a cognitive limit

Westin, et. al. (2016, p.202) support this explanation stating: “Increasing
transparency by providing more information, can be a potential issue if the
amount of information exceeds what the operator is capable to process
within a certain amount of time”. Seong, & Bizantz (2008) have a further
insight, suggesting that the type of transparency may have an effect on
performance. They state: “It is feasible that a configural display of critical
information can be better understood compared to an alphanumeric
based display, which eventually may lead to better calibration of human
trust”(Seong, & Bizantz, 2008, p. 624). Taken together, this suggests that
different types of transparency will have varying cognitive costs, and there
may be optimal types of transparency for certain types of information.

2.4.1 POSSIBLE ROLE FOR COGNITIVE FIT THEORY (CFT)

”Cognitive Fit Theory” (Vessey, 1991; Vessey & Galletta, 1991; Moody, 2009)
offers a possible mitigation for the issue of cognitive overload. It is indeed
possible to optimise data presentation for humans to better suit given
tasks. More recently, Nuamah et. al. (2020) tested the user’s accuracy and
speed in performing a judgment task with graphical and text/tabular
information and found that the graphical mode of presentation performed
best. Cognitive Fit Theory has so far only been investigated in static, non-
dynamic, and time-insensitive contexts. That is, it has only been tested
”in the office”. We speculate that it may have applications in dynamic and
time sensitive contexts as well. That is, CFT may have applications in the
command and control (C2) domain.
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2.5 TRUST VIOLATION AND REPAIR (TVR)

It is possible to degrade or violate a user’s trust in the automation during
the course of their interaction. In the context of HAT, the violation of
trust centres around unexpected behaviour from the autonomous system
(Baker et al., 2018; Cohen et al., 1998; De Visser et al., 2018; Dzindolet et al.,
2003; Lee & See, 2004; Yang, Unhelkar, Li, & Shah, 2017). This encompasses
blatant errors, total system failures, and more subtle, counter-intuitive
behaviour, where there may not necessarily have been any errors. Over
and above good trust calibration, it is also important to consider trust
repair strategies when trust in au- tonomy is violated. Trust violation and
repair (TVR) is a well researched topic in human to human (HH)
relationships (Galdon & Wang, 2019), however there is fertile ground for
exploration in human to machine (HM) relationships.

DeVisser et. al. proposes a transactional model of trust repair (De Visser
et al., 2018). Human trust levels are increased or decreased when the
autonomy engages in “relation- ship acts” and “relationship regulation
acts”. Cost acts can be roughly equated to trust violations and reduces
trust. Beneficial acts are the opposite. Repair acts lessen the impact of
cost acts, whereas dampening acts lessen the impact of beneficial acts. The
combined impacts of these can result in a “net victim effect”, which results
in the degradation of trust.
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Figure 3: DeVisser’s transactional model of trust violation and repair (De Visser et al.,
2018)

In one illustrative example, the “net victim effect” is demonstrated in a
situation where an automated personal assistant purchases a movie for
the user without their explicit permission. In this instance, trust was
violated because the user incurred an unexpected expense. However, this
personal assistant was set to monitor the user’s stress levels and act to
alleviate their stress in various ways. The agent chose to purchase the
movie because it was a type that the user liked and reasoned that having it
available to watch when the user returned home would reduce their stress
levels.

The trust repair behaviour in this example was for 1) the agent to explain
its own reasoning and 2) offer a remedial action, which in this case was
to initiate a refund. Once the user heard the agent’s explanation of its
behaviour and knew they had a remedial option, trust in the autonomy
was repaired. This is of course only an illustrative example, and actual
experimental data was not obtained. However, this is a guide for future
research.
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Although DeVisser’s arguments are theoretical, Dzindolet et al. (2003) have
experimentally demonstrated that providing explanations for the
automation’s errors improves trust. Indeed, a key finding that they have
made is that knowing why an automation may make a mistake increases
trust and reliance, even if the automation is ac- tually unreliable; another
manifestation of automation bias. However, these studies were done in
the context of trust calibration and not necessarily about active TVR
behaviours. The results were also presented as overall summaries of trials
in different conditions and do not show variability of trust over time.

To better understand TVR in HAT, we need to be able to see how trust is
affected by trust repair behaviours, and this requires visibility of trust levels
over time. DeVisser’s paper provides for this by their example graphs (De
Visser et al., 2018) but actual data from experimental studies is still difficult
to find. Yang et. al (2017) have identified this gap and have run a study
providing temporal data, however, once again, this study was focused on
trust calibration, not TVR.

Trust repair and trust calibration are closely related in the sense that they
both require transparency. The defining difference between them lies in
the responsibility of the user in the interaction. For trust calibration, the
user is actively assessing how much they can trust the automation and then
acting accordingly. However, in TVR, it is the automation that is actively
trying to regain the trust of the user. We advocate bypassing the TVR
process in favour of promoting agent predictability.

3 PROPOSING A PREDICTABILITY BASED MODEL

The motivation behind this is to simplify more complex existing models
such as the ones described by Hoff & Bashir (2015), and De Visser et
al. (2018). The model described in Figure 4 shows the flow of possible
interactions between the autonomous team-mate and the human in one
interaction cycle. It also indicates the proportions of these interactions in
a desirable scenario. The biggest arrow shows the most desired, and the
smallest arrow shows the least desired.
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Figure 4: Human-autonomy teaming trust model based on predictability

While of course, the optimal scenario is to have all agent interactions be
expected and beneficial, this is not always possible. When this model is
viewed as part of a continuous interaction cycle, we can see that it is
desirable to change all other agent interaction flows to one that is expected
and beneficial. Where it is possible, all effort must be made to make this
transition.

All possible interventions to make this happen are not explicitly shown
in the model, however it does attempt to encapsulate them. These
interventions can of course include, but are not limited to:

1. Reallocation of team-mate tasks

• e.g. the human will take over tasks that the agent performs badly

2. Adjustment of team-mate performance parameters

• e.g. the human will only allow the agent to perform automation to a level
that the human is confident that the autonomy can perform well
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3. Adjustment in transparency schemes to be more suitable for the
current context

3.1 BEHAVIOURAL CONTRACTS

Recall that in Section 2.5, De Visser et al. (2018) described an illustrative
example where an autonomous agent wrongly anticipated the desire of
its human counterpart to purchase a DVD. This resulted in what they
referred to as a ”Net Victim Effect”. We note that one cause of the net victim
effect could have been avoided if the agent had only asked permission in
the first place. There was a point where the user had a complete lack of
transparency of the process; a Human out-of-the-loop (OOTL) situation as
Endsley (2017) would describe it. However, in time-critical settings, asking
for permission may not always be a practical interruption, as the user
might be concentrating on higher priority tasks. It would be interesting to
see if violation of consent is involved here, and if a mechanism for pre-
consent can mitigate or even eliminate the net victim effect.

We suggest that a mechanism for pre-consent could come in the form of
behavioural contracts. That is, the human teammate and the autonomy
negotiates pre-agreed parameters of behaviour to avoid a human out-
of-the-loop situation as shown in the illustrative example. The artificial
agent would not need to ask permission at the point of decision making
because pre-authorisation has already been given. This avoids the need for
a prompt that might potentially be intrusive, and also avoids unexpected
behaviour from the agent. The idea of behavioural contracts is embedded
in the proposed model, however it is not tested in this study. We will study
this directly in future work.

4 RESEARCH QUESTIONS

Considering the exposition that was given in the background sections,
and our proposed predictability model, we aimed to answer the following
questions:

• What is the relationship between trust and agent predictability?
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• What is the relationship between trust and user workload?

• Can cognitive fit theory be applied to the command and control (C2)
context?

5 METHODOLOGY

An air traffic control task was given to 70 undergraduate psychology
students in exchange for course credit. This was conducted in multiple
Zoom sessions where participants did the task on a web browser.
Participants were exposed to several trials in which they were paired with
an autonomous team mate which they could intervene with if they thought
appropriate. Each session was strictly timed to 30 minutes, and the number
of trials participants were exposed to varied depending on how fast they
completed the surveys, and/or if they required extra time in the training
phase.

This paradigm was chosen because of its ability to quickly increase a user’s
cognitive workload (Cummings & Guerlain, 2007), forcing them to rely on
their autonomous team- mate. Users were also discouraged from
intervening unless they deemed it necessary as an extra incentive to rely
on their autonomous team-mate.

The online context was deliberately chosen to avoid the logistical
challenges and the recruitment difficulties involved in face-to-face studies.
For example, Cabanag et al. (2012) only had eight participants due to these
challenges. Finally, given the continuing pandemic situation, it is preferable
to minimise face- to-face contacts where possible and practical.

5.1 TASK (GAME)

The goal of the game was to safely land as many aeroplanes as possible.
Each aeroplane carried a cargo value, which would be added to the
participant’s score when it had safely landed. If an aeroplane crashed for
any reason, the value of their cargo would be deducted from the player’s
score.
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To discourage users from simply micromanaging the aeroplanes, all
interventions would deduct one point from their score. This prevented
them from indiscriminately making interventions, and interventions would
only be advantageous if it resulted in saving aeroplanes from crashing.

5.1.15.1.1 CollisionsCollisions

It was possible for aeroplanes to collide with each other, and this is
obviously an undesirable outcome. The participant would be able to detect
this by observing the direction of aeroplanes and their indicated heights.
The player’s display is a typical, two dimensional, top-down view, akin to a
real air-traffic controller’s display.

A subtle situation that must be noted is what we refer to as a ”feigned
collision course”. This is where aeroplanes appear to be on a collision
course on the 2D, top-down display, but in fact indicate different heights.
In this case, no collision will occur as the aeroplanes will safely overfly each
other.

Players are informed that they should intervene if they detect a collision
course, but not intervene otherwise. A key error that we observe in this
study is when participants unnecessarily divert the aforementioned
”feigned collision course.”

5.1.25.1.2 Danger ZonesDanger Zones

Aeroplanes could also be endangered by simply flying over designated
areas, which would be indicated by a translucent red box. When
aeroplanes made incursions into these danger zones, they would slowly
take damage until they finally crashed when their health reached zero. In
the obvious case, participants are encouraged to avoid the danger zones.

Again, there was a subtle situation that must be noted, which we refer
to as a ”safe danger zone incursion”. Danger zones have a minimum safe
speed. If aeroplanes travel at a speed above this level, they will not take
damage while they are in the danger zone. Traveling safely through danger
zones has an advantage in shortening flight distance to the goal. Players
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were informed of this fact and were encouraged to allow safe danger zone
incursions.

5.2 VARYING VISUALISATIONS

Participants were exposed to three different types of data visualisations.
They were:

• Text: Shown in Figure: 9

• Graphical: Shown in Figure: 10

• Text Graphical: Shown in Figure: 11

Please see Figures 9, 10 and 11 at the end of this document

5.3 TEAM ROLES, AUTONOMY AND HUMAN

Both the human and the autonomous team-mate could instruct the
aeroplanes to make diversions at any time. The autonomous team-mate
was ostensibly actively ensuring the safe passage of all aeroplanes, while
the role of the human was to oversee the autonomous team-mate’s
decisions.

Errors and other specific behaviours were deliberately executed by the
autonomous team-mate in some trials. The participant’s reaction to these
errors and specific behaviours were observed and measured.

5.4 BEHAVIOURAL MEASURES

We considered a higher number of interventions to be an indication of
mistrust of the agent. Conversely, we considered a lower number of
interventions to be an indication of trust.

We also monitored specific successful and erroneous behaviours. There
were two distinct tasks which were presented to the participant, and they
were:
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• Managing Collisions

• Managing Danger Zones

As the human player and the autonomous-agent interacted, we counted
the occurrences of these successful and erroneous behaviours. While there
were numerous sub-behaviours involved in here, these were amalgamated
into the following key measures:

• Collision Management:

– Successes

– Errors

• Danger Zone Management:

– Successes

– Errors

Please refer to the Appendix for a full listing of all behavioural measures,
including the behaviour codes that were used for data gathering.
Behaviour codes are relevant for reading the data summary in Figure 8.

5.5 SELF REPORT SURVEYS

After each trial, participants were given two surveys to measure perceived
workload and agent predictability:

• The NASA Task Load Index (TLX) (Hart, 2006) to measure the perceived
workload after each trial.

• A ”Competence and Predictability” survey to measure the perceived
performance of the autonomous agent. The 1-5 Likert scale questions are:

– This autonomous team-mate contributed to successfully performing the
overall task

– The autonomous team-mate made a lot of mistakes
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– I knew what the autonomous team-mate was going to do

Please note that this survey was abbreviated in the interests of
experimental time, and we acknowledge that the lack of co-verification
questions is a limitation.

6 ANALYSIS OF RESULTS
6.1 PREDICTABILITY & TRUST

Results show that the most predictable agents were also the ones that
were given the least amount of interventions, as shown in Figures 5 and 6.

Figure 5: Scatter graph of intervention count grouped by predictability rating. Note the
downward trend-line of interventions as predictability rating increases.

118
KATHLEEN YIN, GILLIAN VESTY, STEFAN SCHUTT, DALE LINEGAR, &

VIKTOR ARITY



Figure 6: Pareto line chart showing that the highest predictability rating has the lowest
number of human interventions.

Although we have not yet determined the key factors that affected the
number of interventions, the Pareto line chart in Figure 6 indicates that a
high level of predictability in the agent may be conducive to a high level
of trust. It is strange that the lowest predictability rating resulted in the
second lowest number of interventions, as we would have expected it to
have the highest number of interventions. However, it is interesting to note
that the highest predictability rating had over 2.5 times the number of
interventions than what was observed for the highest predictability rating.
This is indicative that agent predictability is indeed a desirable trait for trust
in an autonomous team-mate.

6.2 PREDICTABILITY & WORKLOAD

Our results show that the most predictable agents were also the ones that
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had the least perceived workloads, as shown in Figure 7. It appears that
high agent predictability is also conducive to low human workload.

Figure 7: Boxplot of TLX rating grouped by predictability rating. Note the downward
trend of workload as predictability increases

6.3 COGNITIVE FIT

Looking at Figure 8, we see that there is some clustering effect around
some visualisa- tion types and task types. Specifically, it is interesting to
note that errors for the Collision Course Management task dramatically fall
in the Text visualisation condition. Similarly, graphical information seems
to be a noticeable advantage for successful behaviours in the Collision
Course Management task.

Still looking at Figure 8, we see that the Graphical Text visualisation does
not au- tomatically result in the worst task performance, which suggests
that the user is still able to use relevant available information (whilst
filtering out the less relevant information) to perform their task. This is
not necessarily surprising, but it would be interesting to see the effects of
participants being close to their cognitive load limits.
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Figure 8: Some clustering effect is apparent when it comes to task and visualisation
type. Note the CC error block resulting in notably lower error rates under the Text
visualisation condition. Please see the appendix for descriptions of the behaviour codes.

7 LIMITATIONS

The results discussed here are preliminary and require deeper analysis.
The simple anal- ysis of means needs to undergo significance testing to
determine that there are indeed statistically significant effects. However,
the clustering behaviour observed in Figure 8 seems to suggest that it
might be statistically significant.

The survey based measurement of predictability is also a limitation. It
would be more convincing to measure predictability behaviourally, i.e. we
should try to see if the participant is successfully predicting their
autonomous team-mate’s behaviour, rather than just suggesting that they
did.

Similarly, workload was also only measured using a self-report survey.
Although the NASA Task Load Index or TLX (Hart, 2006) is often cited
and used in our field, it may be of some benefit to measure workload
behaviourally as well.
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Additionally, the data sampled has unequal instances for each visualisation
condition due to the strict requirement of ending the experiment after
30 minutes, even if the participant was not able to complete all trials.
However, it is in the order of single digits across 478 trials. The exact
numbers are: Graphical: 151, Text: 160, Graphical Text: 167. This small
variation should not have a significant skewing effect, nonetheless we are
noting it for the sake of reader transparency.

The strict ending time also affected the survey results, as participants were
instructed to stop the experiment midway through. 14 trials did not have
any TLX survey data, and were excluded from any analysis involving TLX.

8 IMPLICATIONS & FUTURE WORK

Our results support key notions that:

A : High agent predictability is tied with high levels of trust.

B : Reduced human workload is tied with increased agent predictability.

This accords well with the predictability based model that we proposed
earlier in Section 3. Therefore, it can be said that strategies that increase
agent predictability, and reduce human workload will indeed result in
improved trust in autonomy. We believe further in- vestigation is warranted
to study the validity of the proposed predictability based model. TVR
behaviours, as described by De Visser et al. (2018) could be encapsulated
into this scheme. However, we advocate explicitly investigating the concept
of behavioural contracts, and the notion of pre-consent between the
human and autonomous team-mates. This would bypass the need for TVR
behaviours all together.

Our results are also suggestive of the phenomenon described by ”Cognitive
Fit The- ory” (Moody, 2009; Vessey, 1991; Vessey & Galletta, 1991), whereby
specific tasks are ob- served to have optimal visualisations. This study
seems to demonstrate a counterexample to the findings by Nuamah et. al.
(2020), which showed that the graphical condition was the best performing
visualisation. As shown in Figure 8, the Text Condition for minimising errors
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in the Collision Management task was the highest performing visualisation
type in this study.

This is not to say that Nuamah et. al. claimed that the graphical condition
would be best generally. However, it does reinforce the idea that data
visualisations are closely coupled to the specific task that they are aimed
at.

This is a more nuanced approach that is taken by contemporary schemes
such as Situational Awareness Transparency (SAT), which puts
visualisations on different levels along the same axis. Generally, there is
a prevalent practice of equating the term transparency with information
given to the user (Westin et al., 2016). Adopting cognitive fit as a guiding
principle allows us to specify that transparency refers to the
understandability of a system, not simply the amount of visualisations
presented to the user. In fact, taking this approach is prone to exceeding
the human cognitive load limit and can inadvertently reduce transparency
instead of increasing it (Westin et al., 2016).

Instead of pursuing a grand theory for cognitively efficient information
displays, more pragmatic approaches may be required to meet the current
needs of C2 operators. It may be more practical to use heuristic based
approaches which will be able to readily accept and apply domain expert
knowledge within the immediate context in which they operate. As these
approaches proliferate, a clearer picture will emerge and would help
inform a grand theory for cognitively efficient information displays.
Future studies will address some of the previously discussed limitations.
The tutorial phase and other administrative parts of the trial will be
shortened so as to allow enough time for participants to complete all
exposures. A behavioural measure of predictability will be used, in
conjunction with a survey based one. It would also be interesting to see
how cognitive fit interacts with a wide range of workload conditions. This
study did not manipulate workload, but only measured it using TLX. We
would be specially interested in looking at workload conditions at users’
upper cognitive capacity.
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Figure 9: Text condition

128
KATHLEEN YIN, GILLIAN VESTY, STEFAN SCHUTT, DALE LINEGAR, &

VIKTOR ARITY



Figure 10: Graphical condition
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Figure 11: Text Graphical condition

A APPENDIX
A.1 FULL ENUMARATION OF BEHAVIOURAL MEASURES

For transparency to the reader, the conceptual tasks are further broken
down into the following specific measures:

• Collision Management:
– Successes (CC success)
* Diverting aeroplane on collision course [divertCC]
* Allowing safe overfly [safeOverfly]
– Errors (CC error):
* Aeroplanes collided with each other [collisions]
* Safe overfly diverted incorrectly [divertFCC]

• Danger Zone Management:
– Successes (DZ success):
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* Safe incursions allowed [dzSafeIncursions]
* Diverting dangerous incursions [divertDZDI]
* Cancelling unnecessary diversions (of what was going to be a
safe incur- sion) [divertCancelDZSI]
– Errors (DZ error):
* Crashes in the danger zone [dzCrashes]
* Dangerous incursions [dzDangerousIncursion]
* Diverting safe incursions [divertDZSI]
* Cancelling necessary diversions (inadvertently causing a
dangerous incur- sion) [divertCancelDZDI]
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