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Abstract: It is often claimed that adaptive educational games keep the learner more engaged 
and maximize the learning taking place in the game. We explored these two claims by evaluating 
adaptive and non-adaptive forms of a pattern- and shape-recognition game for preschoolers. We 
used a Bayesian IRT model to make this game adapt in real time to the learner’s performance. 
Results indicate that adaptivity led to higher engagement, and we found some evidence of greater 
learning. We also note some important prerequisites for the success of adaptive games.

Introduction

Adaptive learning, game-based learning, and early learning are all hot topics in educational policy circles: Adaptive 
learning promises to help educators support the wide variety of learning needs and goals in our current educational 
system; game-based learning can improve engagement; and early learning sets the stage for future academic 
success or failure. Adaptive, game-based early learning is also a promising area of research because (a) young 
children learn naturally through play and (b) young children’s abilities develop rapidly, making an adaptive-learning 
context especially appropriate.

There is ample evidence that game-based learning improves engagement (Steinkuehler, Squire, and Barab, 2012) 
and that personalization improves learning (e.g., Connor, Morrison, Fishman, Schatschneider, and Underwood, 
2007). The few studies of real-time adaptivity in games have found mixed results for learning and engagement 
(e.g., Núñez Castellar, All, and Van Looy, 2014; Orvis, Horn, and Belavich, 2008; Sampayo-Vargas, Cope, He, and 
Byrne, 2013); the implementations, curricula, durations, and age groups (no preschoolers) in these studies were 
vastly different. 

Here we describe the design of an iPad-based game designed to help preschoolers learn basic concepts about 
shapes and patterns, and we compare learning and engagement outcomes for the adaptive and non-adaptive 
versions of this game.

Making a game real-time adaptive through Bayesian IRT 

An educational game can be adaptive in different ways. Learners may be assessed initially and then assigned to a 
fixed learning path, or their path may change after each “level” of the game. At the extreme is real-time adaptivity, 
where the game adapts every time a learner completes a challenge. This high level of adaptivity is intended to 
keep the game at a “Goldilocks” level of difficulty for the learner (neither too easy nor too hard) to optimize en-
gagement and learning.

To achieve the continuous assessment required for real-time adaptivity, we used item response theory (IRT) mod-
els (e.g., Embretson & Reise, 2000) from computerized adaptive testing (e.g., van der Linden & Glas, 2010; Wain-
er et al., 2000). IRT provides the tools to estimate item (i.e., challenge) difficulty and person (i.e., learner) ability 
on a single scale (see Figure 1). For example, in a basic model, when an item’s difficulty and a person’s estimated 
ability are equal, the person has a 50% probability of answering the item correctly; when the person’s ability is 
higher/lower than the item’s difficulty, the person is more/less likely to get the answer correct. 

Figure 1: Increasing pattern complexity and learner ability on a single scale.

But games differ in important ways from tests. In tests, people typically answer many items at once, providing a 
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lot of data about both people’s performance and items’ difficulties. Educational games typically consist of multiple 
short interactions with a few responses each. And whereas tests attempt to capture a highly accurate snapshot 
measurement of a person’s ability at a specific moment in time, educational games encourage learning over time, 
with the result that ability estimates change frequently. These features cause trouble for traditional computerized 
adaptive testing models: There is too little information to yield an accurate assessment of a learner’s ability within 
one gameplay session, but taking all measurements together to estimate ability leaves no room to monitor growth. 

Researchers have developed numerous approaches to address these concerns in computerized adaptive learning 
(e.g., Eggen, 2012; Klinkenberg, Straatemeier & van der Maas, 2011; Wauters, Desmet & Van Den Noortgate, 
2010; 2011). Our approach is to use Bayesian IRT (for more on Bayesian IRT models, see Fox, 2010 and van der 
Linden & Glas, 2010). In Bayesian IRT, prior knowledge about a person’s ability is considered in the estimation 
process, so previous gameplay results can be taken into account when learners begin a subsequent play session. 
To monitor change in performance over time, we weighted this prior information less heavily than if the sessions 
had been played in a single assessment situation. In this way, we could counter the effect of short test length by 
incorporating additional information, while still allowing measures of ability to change over time. 

Study Description

We conducted a field experiment to measure engagement and learning in adaptive and non-adaptive versions 
of a learning game for preschool-aged children; we also measured learning in a control group not playing either 
version of the game. We recruited families in the US with a single child between the ages of 2.5 to 4.5 and an iPad 
2 or later with wireless Internet access at home. Household income, ethnicity, and parent education varied widely 
in the sample. Participants and their parents used an iPad app created for this study (described further below) at 
home to complete pre- and posttests and for all game play.

All participants began by completing a pretest with nine questions about shapes and nine about patterns. Partic-
ipants were then randomly assigned to the adaptive (n = 44), non-adaptive (n = 47) or control (n = 48) condition, 
with condition assignment stratified by pretest score. During the following six weeks, participants in the adaptive 
and non-adaptive conditions were asked to use the iPad app to play games designed to assess and teach shape 
identification/manipulation and pattern recognition. The six weeks were divided into 18 lessons, with each lesson 
lasting two or three days. During each lesson, participants were asked to play each of four games at least once, af-
ter which they could replay games as often as they wished. After six weeks, all participants were asked to complete 
an 18-question posttest (a parallel form of the pretest), which resulted in 36 (adaptive), 39 (non-adaptive), and 40 
(control) completed posttests. Participants in the control group were given access to the game after completing 
the posttest. 

For both the adaptive and non-adaptive conditions, each game was designed to continuously measure participant 
ability. For only the adaptive condition, participants were then presented challenges (i.e., items) with an expected 
70% probability of correct response. For participants in the non-adaptive condition, challenge difficulty was in-
creased at the beginning of the third and then every other lesson (i.e., every four to five days), regardless of the 
participant’s ability or whether the participant had played once, multiple times, or not at all during that lesson.

Gameplay

An iPad app was created to advance shape understanding and to teach pattern recognition and extension to pre-
schoolers using two shape games and two pattern games, along with short educational video clips. Within each of 
these two domains, gameplay was largely the same.

In the two shape games, participants worked on shape identification and manipulation (translation, rotation, scal-
ing, and composition). Participants were shown a set of shapes at the bottom of the screen, varying from simple 
shapes like a circle or square to less familiar shapes like a pentagon or irregular octagon. In the easiest levels, 
participants had to match a target shape presented at the top of the screen. In more difficult levels, participants 
had to identify shapes by name only (e.g., “Tap the square”) or rotate shapes to fit an outline. In the hardest levels, 
participants had to compose an outlined shape “puzzle” from multiple pieces, dragging them to the target area and 
rotating them to fit.

In the two pattern games, participants were shown a sequence of objects (such as ABAB, ABCABC, or ABBABB) 
and had to choose the correct object(s) to continue the pattern. At the easiest level, participants saw objects “A” 
and “B” in an ABAB pattern and asked, “What comes next?” with the choice of another “A” item or an unrelated 
“C” item. Higher levels had more difficult distractor objects (e.g., both “A” and B” objects in the example above) 
and asked for multiple pattern elements rather than simply the next element. In the highest levels, participants first 
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defi ned their own sequence of objects and then repeated that sequence.

                                                                             
Shapes Game A Level 2        Shapes Game B Level 8 
Task: Identify Advanced Shape         Task: Compose Shape: 3 parts

Figure 2: Screenshots of the two shapes games 

                
Patterns Game C Level 4          Patterns Game D Level 7

       Task: Extend AB(_)(_)         Task: Extend ABB(_)(_)(_)

Figure 3: Screenshots of the two patterns games 

In all four games, participants were given corrective feedback and hints after incorrect responses, with multiple 
chances to provide the right answer (although only the fi rst response counted towards ability estimation). In addi-
tion, participants were shown short video clips between the games to reinforce the concepts they had just been 
working on.

Results

Engagement 

The fi rst measure of engagement we looked at was the duration of play sessions, defi ned as the time between 
opening and closing the app that contained the games. Figure 4 shows the distribution of the duration per play 
session in minutes for the adaptive and non-adaptive conditions. Because the distributions are skewed (as is often 
the case with measures of time or duration), we took the log of the durations and assessed whether there was a 
difference in log(duration) between conditions with a linear mixed model with random effects for the participants. 
The difference was signifi cant ( = 6.10, df = 1, p = .01). The average duration of play sessions was 10.4 minutes 
in the adaptive condition and 8.7 minutes in the non-adaptive condition. 

Next we looked at the retention of participants over lessons (the 2-3 day periods in which the participants were 
supposed to play all four games at least once). Because we expected usage to decrease (or decay) exponentially 
over time, we used log(lesson number) as a predictor, as well as condition and the interaction between log(lesson 
number) and condition. First, we fi t a logistic regression model predicting whether participants in the two conditions 
played in a certain lesson period. We found a signifi cant decrease in the probability of playing over time (b = -.89, 
z = - 9.39, p < .001) but no signifi cant negative time-by-condition interaction.  

Another way to look at retention is to consider the number of times participants played within each lesson period. 
Because this is a count (which is naturally very skewed) and because there were many zero counts, we performed 
a negative binomial regression analysis, with the same predictors as our previous analysis: log(lesson number), 
condition, and their interaction. There was a signifi cant decrease in number of playthroughs per lesson for the 



251

adaptive condition (b = -.68, z = -7.03, p < .001), but this decrease was steeper for the non-adaptive condition, as 
indicated by a signifi cant interaction effect (b = -.30, z = -3.393, p < .001). Figure 5 illustrates these results. The 
dotted lines represent the observed average number of playthroughs in each lesson, and the solid lines represent 
the number of playthroughs predicted by the negative binomial regression model. Retention is signifi cantly lower 
in the non-adaptive than in the adaptive condition. 

Figure 4: Distribution of play session duration in the adaptive and non-adaptive condition 

Figure 5: Retention of learners over time: Number of playthroughs in each of the lesson periods. 

Learning

First we looked at pre-/posttest score changes, but there were no differences among the adaptive, non-adaptive 
and control conditions. (We will elaborate more on these results in the discussion.) 
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Next we looked at in-game performance measures, using ability estimates calculated throughout the study to see 
how ability estimates at the end of each playthrough changed over time. For both domains (shapes and patterns), 
we ran a linear mixed model with random effects for the participants, and fi xed effects for lesson, condition, and 
the lesson-by-condition interaction.

Figure 6 presents results for the shapes and patterns domains. In the shapes games, the adaptive and non-adap-
tive conditions started out at equal ability (b = -.04, t = -.29). There was no increase in ability for the non-adaptive 
condition (b = .01, t = 2.22), but a positive interaction effect (b = .02 t = 3.521) shows a signifi cant increase in 
ability for the adaptive condition over lessons ( = 12.38, df = 1, p < .001). In the patterns games, the non-adaptive 
group started out at a slightly but not signifi cantly ( = 2.05, df = 1, p = .15) lower level after the fi rst lesson than 
the adaptive group (b = -.23, t = -1.38). The ability in both conditions increased ( = 48.46, df = 1, p < .001) but the 
interaction effect indicated that the increase in ability over lessons was not different for the non-adaptive than for 
the adaptive condition. We elaborate on possible causes for these mixed results below.

        
Figure 6: In-game ability estimates as a function of lesson and condition.

Adaptivity
One way to check the adaptive mechanism is to evaluate the percentage of items per playthrough answered 
correctly during the game and how this changed over lesson periods. In the adaptive condition, this percentage 
should stay at 70% (our target percentage when matching items to ability estimates). For the non-adaptive condi-
tion, the percentage correct should be high in the fi rst lessons and decrease over time, because challenges were 
designed to increase in diffi culty regardless of whether or how well the participant played. The results of a logistic 
mixed regression confi rmed these expectations: The average percentage correct in the adaptive condition was 
67% in the patterns game and 74% in the shapes game, and it did not change signifi cantly over lessons. A signif-
icant interaction indicated a decrease in percentage correct for the non-adaptive condition in both the patterns (b 
= -.1,z = -10.92, p < .01) and shapes (b = -.07 z = -7.72, p < .01) domains.

Another way to check the adaptive mechanism is to evaluate whether the adaptive version of the game was able 
to adapt to the level of the participant adequately. To evaluate this, we looked at the in-game participant-ability 
estimates and the diffi culties of the items offered to the participants in the adaptive condition. Because participants 
were given items that they were expected to answer correctly with 70% probability, the threshold they needed to 
reach for moving up in item diffi culty was equal to the item’s diffi culty + 0.5. Figure 7 shows that item-diffi culty 
thresholds (bold lines) and in-game participant-ability estimates (dotted lines) matched quite well for the shapes 
games. For the patterns games, however, the adaptivity of the games was not optimal: The range of item diffi cul-
ties for this domain was too narrow, overlapping only with a small percentage of the actual participant abilities. 
Therefore, participants with very low or high ability got “stuck” on one level of the game.
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Figure 7: In-game learner ability estimates and item diffi culties over time

Discussion

Our results clearly support the claim that adaptivity in educational games leads to more engagement. The partici-
pants in the adaptive condition played longer sessions than the participants in the non-adaptive condition, and the 
number of playthroughs per lesson period decreased more over time for the non-adaptive than for the adaptive 
condition. 

The results are more mixed for the claim that adaptivity leads to greater learning. In the shapes domain, we found 
evidence of improvements in learning performance in the adaptive condition relative to the non-adaptive condition, 
but the pre-/posttest measures showed no condition differences, and the patterns domain showed no differences 
in learning for the two conditions. 

The failure of pre-/posttest measures to show any differences is quite possibly due to the low reliability of the in-
struments with our participants (Cronbach’s α ranged from .45 to .69 on the subscales). It is also possible that the 
instruments were not sensitive enough to overcome the effects of parental “support” in the tests: In a post-study 
survey, 75% of parents reported having assisted at least a little with either the pre- or posttest, even though they 
were explicitly instructed not to. Another possible explanation could be that staying focused and completing an 18-
item test was simply too ambitious for our preschoolers (e.g., Jones, Rothbart & Posner, 2003). 

The learning results of the patterns domain might be explained by the inferior functioning of the adaptive mecha-
nism in the patterns games. Specifi cally, the range of diffi culty levels for the games’ challenges did not match the 
actual abilities of the participants playing the games, so the majority of adaptive-condition participants got “stuck” 
in either the easiest or hardest game challenges. In the non-adaptive condition, participants received challenges 
of increasing diffi culty regardless of their performance, which could explain why these learners showed equal 
learning over time.

In conclusion, our study provided evidence of increased engagement in adaptive games and mixed evidence 
for increased learning. One important lesson from this experiment for designers of adaptive learning games is to 
include challenges (i.e., items) spanning a wide enough range of diffi culties to match the full range of learners’ 
abilities. This requires some form of item calibration (testing challenges with diverse learners to assess their dif-
fi culties) during the design of the game so that gaps in challenge diffi culty can be fi lled with appropriately diffi cult 
new challenges. Future work on adaptive games could include investigating more effi cient ways to calibrate item 
diffi culties in adaptive games, to more quickly achieve the necessary range of challenges without increasing the 
already substantial work of recruiting learners solely for this process. Another important lesson from this experi-
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ment is that adaptive learning games of this kind can be effective even with children as young as three years old. 
This is particularly important given that children vary tremendously in their levels of skill as well as their rates of 
development in this age range, and it suggests that more work could be done to develop effective learning games 
to provide more tailored learning experiences in this key developmental period. 
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