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Leveling Up: 
Measuring and Leveraging Implicit STEM learning in Games

Abstract: Games provide an important vehicle for educators to promote and study learning. This 
symposium will examine research on measuring implicit game-based learning and teachers lever-
aging its relationship for explicit (e.g. school-based) STEM learning. The authors have developed 
a series of learning games that simulate authentic scientific phenomena, providing a learning 
mechanic for players to dwell in that phenomena and build their implicit understandings. The data 
logs generated through digital gameplay were mined to understand the patterns of play that may 
be related to implicit learning—the development of knowledge that is not yet explicitly formal-
ized. Teachers used examples from games to help bridge implicit game-based learning to explicit 
STEM concepts taught in class. 

Presentation 1: Framing of Implicit Learning in Games

Jodi Asbell-Clarke, Educational Gaming Environments group at TERC
Elizabeth Rowe, Educational Gaming Environments group at TERC

The theoretical framing that guides the research is based in a model of implicit learning, explored more commonly 
in psychology, philosophy, and sociology (e.g., Collins, 2010; Polanyi, 1966; Reber, 1993). Implicit knowledge is, 
by definition, largely unexpressed by the learner. Explicit knowledge is what educators typically attempt to mea-
sure in learning assessments. Implicit learning is considered foundational to all knowledge (Polanyi, 1966), but 
has not made headway in educational research because until now, it has been particularly difficult to measure. 
This framework differentiates between explicit knowledge, what we can express, from implicit knowing, what we 
are able to do. Cook and Brown (1999) argue that implicit and explicit knowledge can aid one another, claiming 
that a dynamic affordance of the interaction between acquisition and usage of knowledge such that knowledge and 
knowing (the doing that is associated with knowledge) are linked. A classic example used in implicit knowledge 
literature is learning to ride a bicycle. One does not need to formalize the physics to ride a bike, but familiarity with 
the sensations of riding often help students learn the physics.

Games present a rich opportunity to support and measure implicit learning (Thomas & Brown, 2011). Players are 
often immersed in problem-solving situations where they experiment with the mechanics to understand the rule 
system, using trial and error with helpful feedback and rewards for motivation and sustained engagement (NRC, 
2011). Reber (1993) suggests that experimental procedures to measure implicit learning should be (a) novel to the 
learner, (b) complex enough to not be “cracked” easily, (c) emotionally neutral to the learner, and (d) synthetic and 
arbitrary. Many games fulfill these criteria quite nicely. 

We argue, however, that games must be designed with attention to learning and measurement. Plass and his 
colleagues (2011) suggest designers must carefully identify and align the game mechanics, learning mechanics, 
and assessment mechanics. Game mechanics are what the player does in the game, learning mechanics are the 
activities through which the player learns a construct, and assessment mechanics are the diagnostics that provide 
evidence of that learning. 

Our work considers game, learning, and assessment mechanics as part of the overall game design. Our games 
use simple game mechanics found in many popular games (e.g., get a ball to a goal without crashing into other 
balls; or solving puzzles to point lasers to hit a target) within a scientifically accurate simulation. By creating in-
creasingly complex situations in which a player must grapple with the consequences of scientific laws and phe-
nomena, we are creating an environment in which the game and learning mechanics are well aligned. Presenta-
tions 2 and 3 describe our methods for developing the in-game assessment mechanics, relying on observed play 
patterns rather than pre-defined metrics.

Impulse                             

In Impulse, players are immersed in what is known to physicists as an n-body simulator, where all the balls have 
mass and obey Newton’s laws of motion (Figure 1). Players must use an impulse (a click or touch on the screen) to 
move their ball into the goal without crashing into ambient balls. As the levels of the game increase, more ambient 
balls are introduced, with varying mass.
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Figure 1: A screenshot from Impulse. The player is the green particle and is going towards the cyan goal 
in the bottom-left corner. Red, blue, and white particles have different masses.

As players reach higher levels with greater numbers and variety of masses of balls, they need to “study” the balls’ 
behavior to predict the motion of balls so that they can guide their ball to the goal, not run out of energy, and avoid 
collision with other balls.

Quantum Spectre

Quantum Spectre is a puzzle-style game designed to immerse players in a simulated optics bench and improve 
their implicit understanding of the concepts of focal length, angle of incidence equals angle of refl ection, and slope. 
Each level requires the player to direct one or more laser beams to targets while (potentially) avoiding obstacles 
(Figure 2). For each level, an inventory provides the player with access to resources, such as fl at and curved 
(concave, convex, and double-sided) mirrors, (concave and convex) lenses, beam-splitters, and more, that can be 
placed and oriented within the puzzle and that interact with and direct the laser beams in a scientifi cally accurate 
manner. When the appropriate color laser beam(s) have reached all the targets, a level is complete. 

         

Figure 2: Two Quantum Spectre puzzles

The player earns three “stars” if the puzzle has been solved in the fewest possible moves, two “stars” for a low 
number of extra moves, and one “star” for any solution. A player can go onto to the next level as soon as a puzzle 
is complete, regardless of the number of moves used, but the stars system provides an incentive for level replay 
and an understanding of the puzzle’s solution.
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Presentation 2: Strategic Moves as Measures of Implicit Learning

Elizabeth Rowe, EdGE at TERC
Jodi Asbell-Clarke, EdGE at TERC

Ryan Baker, Teachers College, Columbia University

There are three steps to our emergent method of building in-game measures of implicit science learning: (a) Video 
coding as ground truth; (b) Building automated detectors; and (c) Validating detectors with pre-post assessment 
data. We chose this emergent approach due to the open-ended nature of the game space (millions of paths 
through each level of Impulse) and not wanting to a priori select specific player behaviors as evidence of an implicit 
understanding without a detailed observation of how they played.

Video Coding as Ground Truth

Strategic moves are the actions (clicks) players take within a game that have an intended outcome consistent with 
the goal of the game. In Impulse, the goal of the game is moving the player ball to the goal without colliding with 
other balls. Using three-minute segments of videos with screen capture of 69 high school students playing Im-
pulse, we identified and reliably coded six strategic moves (Table 1). This video coding later grounds the detectors 
with meaningful human labels.

Strategic Move Definition Kappa

Float The player ball was not acted upon for more than 1 second 0.759

Move toward goal The learner intended to move the player ball toward the goal 0.809

Stop/slow down The learner intended to stop or slow the motion of the player ball 0.720

Keep player path clear The learner intended to move non-player balls to keep the path of the player ball clear 0.819

Keep goal clear The learner intended to move non-player balls to keep goal clear 0.832

Buffer
The learner intended to create a buffer between the player and other balls to avoid 
collision

0.772

Source: Rowe, Baker & Asbell-Clarke (2014)

Table 1: Strategic moves, definitions, and Cohen’s Kappas

Two of these strategic moves, Float and Stop/Slow Down, are consistent with an implicit understanding of New-
ton’s First Law—an object will keep moving unless acted upon by a force. Float is the passive version of Newton’s 
First Law, requiring no action on the part of the player. Stop/Slow Down requires players to actively oppose the 
motion of the player ball. The remaining four strategies, while useful game strategies, were not hypothesized to 
support implicit science learning.

Newton’s Second Law—that different mass particles react differently to the same force—required examining se-
quences of fast moves. Besides the player ball, there were four other types of balls each with a color signifying a 
different mass (in order from least to most massive): blue, red, white, dark grey. The blue, red, and white balls also 
increased in size (consistent with the same density of ball) but the dark grey ball was most massive and smallest 
in size. This was to ensure that mass was being differentiated in players’ behaviors rather than size.

To analyze whether students were behaving as if they understood Newton’s Second Law, we coded information 
about the target of a click and whether or not the target of the current click was the same as the previous click 
(Table 2). Kappas for these codes exceeded 0.80 (Rowe et al., 2014b). These codes were combined to determine 
if players consistently used more force (clicks) to move the heavier balls than the lighter ones. From these codes, 
the number of consecutive clicks (e.g., sequence length) for each color target was calculated. We found that play-
ers impart more force for the heavier balls, even the grey balls that are much smaller in diameter, indicating that 
it is indeed mass, rather than size, that motivates their increase of force (Rowe, Asbell-Clarke & Baker, in press).

Building Automated Detectors

Impulse logs every game event as well as the location of every object in the game space. Recorded game events 
include level starts/ends, pausing and resuming the game, as well as moves and states salient to the individual 
game. From this raw game log, we distill features such as the speed of the player ball and the time since the last 
click. These distilled features are added to the original clickstream data. Using the synchronized timestamps, these 
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features are then aggregated at the click level to map to the labels provided by the video coder. 

Classifiers (strategic move 0=absent; 1=present) were created using J48 decision trees within RapidMiner 5.3 that 
mapped the player behaviors in the features distilled from the clickstream data to the human labels, cross-validat-
ing at the student level. The goal of these classifiers was to develop an automated, algorithmic way of analyzing 
the logs of student interaction that would come to the same judgments as a human being. All detectors for the 
strategic moves discussed here had cross-validated Kappas between 0.51 and 0.86 and A’ between 0.78 and 0.97 
(Rowe et al., 2014b). 

Validate Detectors with Pre-Post Assessment Data

We applied automated detectors of strategic moves to a new and larger sample of gameplay data. These data 
were collected as part of national implementation study of Impulse. This study compared 213 students in 21 
classrooms that only played the game and 180 students in 18 classrooms where the players’ teacher used game 
examples to bridge the implicit science learning in the game with explicit science content covered in class. Path 
analyses suggest the mediating role of strategic moves on students’ implicit science learning is different between 
the two conditions (Rowe, Baker & Asbell-Clarke, 2015). 

Presentation 3. Interaction networks to measure implicit science learning

Michael Eagle, North Carolina State University
Elizabeth Rowe, Educational Gaming Environments Group at TERC

Rebecca Brown, North Carolina State University
Andrew Hicks, North Carolina State University
Tiffany Barnes, North Carolina State University

Jodi Asbell-Clarke, Educational Gaming Environments Group at TERC
Teon Edwards, Educational Gaming Environments Group at TERC

Understanding user behavior in complex problem solving tasks is important for both assessing learning and for 
the design of content. Problem solving is an important skill across all STEM (science, technology, engineering, 
and math) fields. One strong benefit of digital learning environments is the large amounts of student log-data that 
we can collect. This data provides measurements of problem-solving behavior at a detail that were not possible 
before. However, the data is not easy for developers or instructors to use in ways that inform teaching and learning.

To provide insight into student problem-solving behavior in interactive systems, we have developed a complex 
Interaction Network (IN) representation of student-game interactions (Eagle, Brown, Rowe, Asbell-Clarke, Barnes, 
& Edwards, 2015). An Interaction Network is a complex network representation of all observed student-game 
interactions for a given problem. We define an interaction as a {Start_State, Action, End_State} tuple. A state rep-
resents the moves a student has made up until a given point. As a simplified example, consider a checkers game. 
At the beginning of the game, the Start_State is the set of standard locations of all checker pieces. The Actions 
are all of the possible moves a player could make (e.g., one or two spaces forward). The End_States are the set 
of checker locations after one checker piece had been moved. These End-States become the Start_States for the 
next set of moves the player makes. The interaction network would be all possible combinations of Start_States, 
Actions, End_States from the beginning to end of a game. 

These Interaction Networks have been used to provide instructors and game developers with visualizations of their 
user’s problem-solving behaviors (Johnson, Eagle, & Barnes, 2013, Eagle, Johnson, Barnes, & Boyce, 2013). 
Clustering similar states within Interaction Networks together, we can observe differences student’s high-level 
approaches towards solving the problem (Eagle & Barnes, 2014; Hicks, Peddycord & Barnes, 2014). The resulting 
clustered representation is called an Approach Map. Within a propositional logic tutor, this Approach Map tech-
nique was able to help demonstrate significant between-group differences in problem solving approaches for an 
experimental and control group (Eagle & Barnes, 2014; Hicks, Peddycord, & Barnes, 2014).
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 Interaction Networks in Quantum Spectre

In this work, we apply Interaction Networks to data from Quantum Spectre to derive understanding and insight 
about (a) what common correct strategies students use (b) what common science (and puzzle errors students 
make; and (c) where in the game-play sequence students are most likely to quit. This paper reports Interaction 
Networks built from gameplay data of 195 high school students playing Level 18 of Quantum Spectre. Of these 
students, 101 (52%) were in the Bridge group and 94 (48%) were in the Games group. In Level 18, the science 
concepts of interest are the angle of incidence equals the angle of refraction and slope.

               
Figure 3: Quantum Spectre, Level 18 puzzle state-to-state transitions for one solution path

Figure 3 shows an example of a single student attempt of level 18 in Quantum Spectre, mapped into a sequence 
of states (screenshots) with edges (arrows) for each action (move or rotate) the student took. Each edge is labeled 
with the action the student player took to change the game state; for example Move (2,3) represents moving a 
mirror to position (2,3). To construct an Interaction Network for a problem, we take the union of all of student puz-
zle solution attempts and merge actions (edges) and states (vertices) that are the same according to a matching 
function. The usefulness of an Interaction Network for visual analytics is determined by the quality of the state 
representation, the granularity of the actions, and the matching function.

The fi rst step in modeling gameplay data as an Interaction Network is to determine a suitable state representation 
and matching function. In games, our fi rst attempt is to serialize the game state – in other words, record everything 
the game needs to recreate the current status of the game. In Quantum Spectre, this is a list of the game objects 
that players can interact with and their current position and rotation. Level 18 has 2 fl at mirrors. We ignore the 
distinction between objects of the same type, so the order of placement does not matter. 

For level 18, using this representation for 6145 student-transactions produced an Interaction Network with 916 
states and 1614 edges. We applied basic fi ltering, removing states that occurred for only one student, to simplify 
the network further to 322 states and 874 edges. We fi rst applied the Approach Map technique (Eagle & Barnes, 
2014) to cluster these interactions into 18 region states (clusters of highly-connected states) and 30 edges. Since 
each region represents multiple states with varying types of errors (i.e., the clusters were not sorting on the types 
of errors making the regions diffi cult to interpret), we then developed an Approach Map with laser shape represen-
tation for regions. A “laser shape” representation consists of a list of the targets that are hit by a particular colored 
laser and a list of the angles that the laser beam takes on its path. Laser shapes are what player is trying to alter 
to solve the puzzle and it is the shape of the path that provides feedback about the accuracy of their placement 
and rotation of the mirrors, so it is not surprising laser shapes provided a more parsimonious, interpretable visu-
alization. 

We found that some game states in the puzzle were equivalent in terms of their correctness, and showed the same 
player profi ciencies or errors. To group these equivalent states and reduce the number of states, we calculated the 
shape of the laser as it passed through any objects on the board. Figure 4 shows one laser shape and the three 
states it represents, where red circles are targets the laser beam should pass through, the red arrow is the laser 
source, and the black curves are mirrors. This approach preserves the relevant properties of a board state while 
ignoring distance traveled, which does not matter for correctness.

Figure 4: The far left is the LaserShape and represents all three of the other states
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We combined the Interaction Network extraction, reduction, graph mining, and visualization to build the Approach 
Map shown in Figure 5. The regions have been outlined according to the correctness of states they represent, with 
correct states contributing green to the edge and region outline colors, and incorrect states contributing orange. 
Regions with full orange outlines represent incorrect solutions, and those with green outlines are correct. Blue-out-
lined regions have a combination of correct and incorrect, or not yet complete, actions. We have grouped what we 
call a ‘’confusion region” with a dashed line, to illustrate the various incorrect attempts students make. 

                         
Figure 5: The Approach Map for Level 18. 

These representations enable game developers and learning scientists to better understand the broad patterns in 
the behaviors of players solving the puzzle. Players who start and stay in the confusion region seem to be able to 
solve the puzzle for one target but not for two. Instructors and developers who want to explore the individual re-
gions can “zoom in” on the internal states of each cluster region. Learning scientists will label these internal states 
for their evidence of a lack of science understanding. Labeling clusters in using these visualizations saves a large 
amount of coding time and makes reliable coding easier to achieve. In our future work, we plan to apply these da-
ta-driven visualizations and graph mining techniques across several levels of Quantum Spectre, and look for ways 
to provide summaries across problems and look for differences in learning between groups.

Presentation 4. Teachers Bridging Implicit to Explicit Learning

Elizabeth Rowe, Educational Gaming Environments Group at TERC
Erin Bardar, Educational Gaming Environments Group at TERC

Jodi Asbell-Clarke, Educational Gaming Environments Group at TERC

The connections that people make socially and cognitively in other web spaces (game affinity sites) and in person 
(e.g., in a classroom) around a game are a large part of game-based learning. Jim Gee (2008) refers to this as the 
Big “G” Game. Teaching methods that leverage game-based implicit learning must provide tools for teachers to 
“see” the learning and respond to it. The teachers may not be as likely as their students to be playing the newest 
game in the app store, but teachers are embracing game-based education and would like more opportunities to 
use games as vehicles for learning (Cooney, 2012). 

We conducted a national implementation study with three groups of high school learners: 

a) the Games group whose teachers encourage students to play Impulse outside of class; 

b) the Bridge group whose teachers encourage students to play Impulse outside of class and use examples 
from the game (bridge activities) when they teach related content in class;

c) the Control group that does not play the game or use bridge activities. 

As reported previously at GLS, this study has shown significant STEM learning gains in Bridge classes, with the 
largest effect among students in non-honor/AP classes (Rowe et al., 2014a). When a teacher uses game exam-
ples to help bridge the game-based implicit learning to STEM content discussed explicitly in the classroom, stu-
dents have higher gains on pre/post tests about related science content than students in the Control classes. To 
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unpack these findings further, we have been analyzing logs of teacher activity modeled after the SCOOP Notebook 
developed by CRESST (Borko, Stecher & Kuffner, 2007). The coding system developed for this study focuses on 
the type of classroom activities (e.g., direct instruction, hands-on activities, etc.); the science content taught (e.g., 
Newton’s Laws, forces, etc.), and game-based pedagogies used (e.g., using game examples during instruction, 
modeling game play, discussing the game, etc.). To confirm the reliability of the coding system, 10 of the 50 teach-
er logs are were double-coded by our independent evaluators with an average Cohen’s Kappa of 0.71.

Two types of analyses using these logs are being conducted. The first set of analyses compares student demo-
graphics, teacher background, and science pedagogy and content covered in Honors/AP and non-Honors/AP 
across the Control, Game, and Bridge groups. The second set of analyses describes the game-based pedagogies 
used in the 18 Bridge classrooms. The game-based pedagogies (e.g., frequency with which examples were used, 
the amount of teacher or student modeling of game play) in 6 Honors/AP classrooms will be compared to the ped-
agogies used in the 12 non-Honors/AP classrooms.

Since submission, we found few group differences in student demographics, teacher background, and science 
pedagogy/content coverage that might explain these findings (Rowe, Bardar, Asbell-Clarke, Shane-Simpson, Rob-
erts, in press). There were significant differences, however, between Honors/AP and non-Honors/AP classes in 
their use of specific game-based pedagogies.
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