

Behind the Black Box

Behind the Black Box
Sessions with Game Engine Professionals

Caleb Biasco, Jared Ettinger, Jacob Wilson,
Chaojie Zhu, and Yidi Zhu

Carnegie Mellon University: ETC Press: Student

Pittsburgh, PA

Behind the Black Box by Carnegie Mellon University: ETC Press: Student is licensed under
a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License,
except where otherwise noted.

Copyright © ETC Press 2018 http://press.etc.cmu.edu/

TEXT: The text of this work is licensed under a Attribution-NonCommercial-NoDerivatives
4.0 International (CC BY-NC-ND 4.0) (https://creativecommons.org/licenses/by-nc-nd/4.0/)

IMAGES: All images appearing in this work are licensed under a
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Contents

Preface vii

Cort Stratton
Foreword ix

Why Game Engine Development is Worth Learning
Casey Muratori

1

An Engine Developer's Toolbox
Jeff Preshing

14

Engine Programming is All Plumbing
Amandine Coget

25

The Definition and Beginning of a Game Engine
Adam Serdar

35

Growing Pains in Engine Development
Aras Pranckevičius

44

Wisdom from Working at AAA Studios for 15 Years
Elan Ruskin

54

Going Beyond the Books
Shanee Nishry

65

Thinking About the Data
Martin Middleton

78

The Engine Sandwich: Made with Super Meat
Tommy Refenes

88

A Lost Art
Raymond Graham

98

About the Team 109

About the Publisher 110

Acknowledgements 113

Preface

We don’t know what we’re doing. And how could we? This pro-
ject started when our team of five noticed a significant gap in
the field of game engine programming; there was no clear start-
ing point for novices. We found many completed engines with
demos of their technical feats, but we struggled to find a time-
line, decision breakdown, or process behind those engines. No
matter where we looked online, the sure-fire responses others
would give were to read a textbook that is over one thousand
pages long — or to do it yourself. We thought if we were to do
the latter, we could document the down-and-dirty process and
leave something for other aspiring engine devs to discover.

The idea was proposed to our graduate faculty as a self-driven
project to develop an engine in three months. And being that
we were students and (more importantly) novices to the field
of engine development with little to no prior assumptions, we
would be able to document and speak on the topic with a unique
perspective. Unique, however, doesn’t always mean useful! Our
conclusion was to interview professional game engine program-
mers alongside our engine development. In this way, we paired
our novice understanding with industry experts on the funda-
mentals of game engine programming

For most of the interviews you are going to read, we had no
prior connections to the interviewees. We happened to think
they were doing interesting work, so reached out to them via
public email/social media and hoped for the best. Luckily, these
individuals thought our work was interesting as well, and they
were happy to help us. We interviewed most of them over Skype
and some in person on a trip to Los Angeles. Each interview has

been transcribed and edited for clarity, with approval from the
interviewee.

From these interviews, we came to understand more of how this
rarely discussed field works. There were many times when the
team would be hemming and hawing over different approaches
for an engine feature, only to have an interviewee incidentally
bring up something that illuminated a better approach to us. If
you are developing a game engine yourself, we think you will
get the same kinds of “a-ha!” moments from their stories. If you
are just interested in learning more about the game industry,
then you will find a behind-the-scenes look from a diverse array
of perspectives.

viii Preface

Foreword

Speaking as a former aspiring engine programmer, I hope you
realize how lucky you are to be holding this book.

When I was an undergraduate at Carnegie Mellon’s School of
Computer Science in the late 1990s, I (along with many young
programmers, then & now) was intensely interested in game
development. I knew that games were built on top of something
called an “engine”, but at the time, a “game engine” was some-
thing that Actual Companies with Actual Budgets paid bags full
of Actual Money to get access to. Both the engines themselves
and the development that went into them were closely-guarded
trade secrets, with the possible exception of occasional nuggets
slipped into John Carmack’s .plan files (hey, remember .plan
files?). I had no shortage of passion for the material, but as
a starving college student with embarrassingly few sackfuls of
money to my name, I felt that I had no choice but to figure
everything out on my own. And so, teeth firmly clenched, I pro-
ceeded to dig my way down to the very bottom of the technol-
ogy stack, thus beginning a life-long journey to claw my way
back up to actual game development.

Twenty years later, I really can’t complain about where I ended
up. I’ve been fortunate enough to work with amazing teams
teams at Electronic Arts, Sony, Google, and Unity, and have con-
tributed to thousands of games at every scale, from giant AAA
blockbusters to the humblest indie offerings. I certainly know
more about engine programming than I did back in college.
And yet, reading through these collected interviews, I think of
all the mistakes and false starts I could have avoided along the
way, and I can’t help but feel a bit jealous of the head start these
students will have vs. myself at their age.

Reading Casey Muratori’s interview, I’m painfully reminded of
the months I’ve wasted over-thinking the design and feature
set of APIs without a single well-considered use case. Reading
Amandine Coget’s, I lament the weeks I’ve lost to indecision
paralysis, unwilling to make forward progress on a change until
I fully understood the entire labyrinthine context of the system.
Through Jeff Preshing and Aras Pranckevičius, I recall (with
appropriate shame) the years I spent dismissing interpersonal
communication and professionalism as the sort of skills only
“the suits” needed to worry about. Alongside Raymond Graham,
I remember the PlayStation 3’s SPU co-processors, and… well,
actually, I have no regrets there are all; SPU programming was
incredible, and if you didn’t get to experience it, you seriously
missed out on something special. You have my sympathy.

The remaining interviews are equally illuminating. However,
the most important takeaway from this book may not be any-
thing in the interviews (or the foreword, but that’s an excellent
guess as well). The very existence of the book itself is a blessing,
as is the simple fact that these distinguished developers have
made themselves and their wisdom available to fellow profes-
sionals, students, and hobbyists alike. Game engine program-
ming is a dark art, it’s true, and its practitioners are a rare breed.
But it turns out they’re also a generous bunch. Today’s passion-
ate developers don’t need to figure things out on their own;
whether you’re a member of a giant team working on the next
great AAA engine or an inquisitive individual, the tricks of the
game engine trade are often only a tweet away. (Hey, remember
Twitter?)

Meanwhile, complete professional-grade engines like Unity and
Unreal are now available for anybody to play with (no bags of
money required!), and a sprawling ecosystem of open-source
libraries gives programmers an unprecedented peek under the
hood of their favorite tools. It’s never been easier to get started
as a game developer, and I believe it’s only going to get easier
going forward. But even the best software (and its source code)
only shows you the final product, not the thought processes that
created it. Tools give you the what, source code shows you the
how, and a book like this one exposes the why.

x Foreword

I commend the developers for taking the time to share their
knowledge. I applaud the members of the Isetta team for col-
lecting and publishing that knowledge. And I salute you, the
reader, for being curious enough to pursue it. Speaking as a pro-
fessional aspiring engine programmer, I can’t wait to see what
you build with it!

Cort Stratton
Senior Software Engineer, Unity Technologies

Los Angeles, California
November 2018

Foreword xi

Why Game Engine Development is
Worth Learning

Casey Muratori

Casey MCasey Mururatoriatori is the lead program-
mer on 1935, an upcoming interac-
tive story engine project, and the host
of Handmade Hero, an instruc-
tional series for game engine pro-
grammers. His past projects include
The Witness, the Bink 2 video
codec, and the Granny Character
Animation System.

The Shortage of Engine Programmers

I won’t pretend I have the data to support that there is a real
shortage of engine programmers, but if today you told me I
needed to staff up a modest ten-person engine team, I would
have almost no idea where to get eight of those people. And the
two that I maybe do know where to get, I’d have to hire from
some other team. So I’m strictly talking about this from per-
sonal experience in the game industry. It is an anecdote, not a
statistic, when I say I just don’t find that people know where to
hire engine programmers. I know plenty of people who have
hired people who they really don’t think are even that good
at engine programming, but who were definitely the best they
could get.

Similarly, I know plenty of people who would hire another
engine programmer right now if they could find one, but there’s
no one who meets their cutoff. Some of that is — especially on
smaller teams — because you can’t afford to hire lots of junior
people. Maybe there’s some raw talent out there and it just
needs to be developed. Data-wise, I don’t want to make claims
about this that I can’t substantiate, but real engine programming
experts are very hard to find, and I can’t offer you a reason for
that. I just assume the reason is that even something as simple
as using Unity kind of requires you to understand 3D math at a
pretty decent level if you’re not gonna ship one of these games
with tons of obvious bugs.

Being a game engine programmer is just a hard profession. It
demands that you know a lot of things, so it’s not for the faint
of heart. It requires a lot of expertise, a lot of time spent learn-
ing even to just be a competent engine-side programmer. You
need a lot of skill to modify Unreal Engine in a small way, or
even to competently program a motion controller. These are
just skills that people don’t seem to have in abundance. Even
today when you can just go get an engine so you don’t need to
build it from scratch, we still haven’t gotten to the point where
we have enough people with expertise.

We don’t have enough expertise versus how much we could be
using to make games better. I suspect if you talked to other
people in the game industry, they would have similar opinions
about how hard it is to find good engine programmers. I don’t
want to put words in their mouth, but it’s not the kind of thing
that you can just go find someone to do. I think we’re getting
better at pipelines for finding artists thanks to social media and
online tutorials about what goes into making a game asset. Per-
haps also because of school curricula that was not around in the
old days.

What I have not seen change is the number of engine program-
mers. The last three engine programmer hires I know about —
or was in any way involved with — all came from Handmade
Hero. If it wasn’t for Handmade Hero, who knows if they even
would have done it? That was the reason for Handmade Hero:

2 Behind the Black Box

because I believe this way of life is worth preserving. It’s talking
specifically about a practice and a discipline and a mental
model. I never said I want to show you how I make a game. I said
“this way of life” specifically. I feel like making a game is covered
well enough elsewhere.

The Confusion with Game Engines

Problem 1: An Amorphous System

There are two fundamental problems in game engine develop-
ment that I think set it apart from a lot of other types of devel-
opment. The first one is that it is not a stateable problem in any
way. Half of everything that programming does in the past or
today looks a lot like stdin/stdout1. You can phrase it as “here are
the set of inputs, and here are the set of outputs that come out of
it.” So most of the things that programmers are used to thinking
about are “I’m working on deep learning2. Here’s a set of input
images and a set of output tuned neural net parameters. How do
I make the best translation between these two things?” Or, “I’m a
natural language processing person, here’s all the corpus3 I want
in and here are the noun tags I want out, or the sentence tags I
want.”

I think one of the biggest challenges for an early game engine
programmer is making the leap from input-output thinking to
this amorphous system. It’s very confusing how that happens
at first, because even though you’re not necessarily aware of it,
everything you’ve ever done prior to that looks a lot more like
this input-output phrasing. One of the really good things that
you can do at first is to try to figure out the “core loop” of a game
engine; the golden differentiator of a simulation. In a flight sim-
ulator or a game, they look like this real-time loop where I have
a set of entities (each with their own states) and I go through a
simulation to change those states. That’s a certain process. I then

1. stdin and stdout are the functions that handle program input/output in the
standard library of the C programming language.

2. Deep learning is a machine learning technique that teaches computers to do
what comes naturally to humans: learn by example. Deep learning is a key
technology behind driverless cars, enabling them to recognize a stop sign or to
distinguish a pedestrian from a lamppost.

3. In linguistics, a corpus or text corpus is a large and structured set of texts.

Why Game Engine Development is Worth Learning 3

go through a way of presenting those things, and then I return
to the beginning.

Game Engine Core Loop

Just getting yourself comfortable with that and the fact that
everything you build has to build out of that is just the first big
step. It’s not input-output anymore. It doesn’t look like a web
program; it doesn’t look like the neural network; it doesn’t look
like a parser; doesn’t look like a server; doesn’t look at any of
these things. It looks like that — a “core loop”.

Problem 2: The Complexity Explosion

The other thing is the complexity explosion. So again, it’s not
input to output where things are very clean. You now have all of
these systems that are all happening at the same time. They all
interact, they all overlay on top of each other. The physics and
the rendering and the blob, etc. All this stuff comes together.

You really need to be able to do discoverable architecture in
order to do these things correctly. Most people are just not
familiar with that process — I called it Compression-Oriented
Programming in the past. I would define that as the technique of
starting with the simplest way possible. I think this is Jonathan
Blow’s term that he uses often: Write whatever is obvious to you.
Don’t even think about the rest of the game engine. Focus on the
one thing you need to do at the time. Think about it more like
the standard in, standard out (stdin, stdout) that we’re all used to.
How do I it to just get the input and the output; to do the thing I
need to do in isolation? No code design, no cleanliness, no noth-

4 Behind the Black Box

ing. You need to be able to clear everything from your head and
just do that, and then pull that out into the architecture.

One of the biggest mistakes I think even experienced game pro-
grammers will make is they go the other direction. They try to
start with the architecture and drill down to the thing they want
to do. Never in my entire life have I seen a good result from
that. It almost always has to be “refactored” at the end. That’s
because when you start from a conception of how something
will plug together, you don’t see all the details. You don’t know
all the things that you’re gonna have to do when you go to solve
the problem, so you always forget some of the details. On the
other hand, if you just implement the real thing first and then
pull it up into the architecture, you almost always end up with
better results. I like to think about those problems.

The “Boundary Value Problem” Architecture Method

There’s this thing called boundary value problems4 in mathe-
matics, and there are different ways of solving them. There’s the
shooting method: I start here, I see where I end up. There’s also
the method of solving backward, where I look from the end-
point and try to see what I could do differently. Building up a
skill set of how you work on code that allows you to work from
either side of the problem ends up being really valuable. Like I
said, you usually want to start with an isolated solution and loft
it up into the architecture. But then, when you get to a certain
level of that lofting you want to think from the other side down.
You want to determine what a good API for this should look
like, what are some things you maybe didn’t think about while
implementing it. And things that you should maybe change,
that wouldn’t break the algorithm, but that would let it work bet-
ter with this integration.

You almost want a ping-pong development process where you start at
the solution, work backwards a little, go to the architecture side, work
forwards a little, and come back. The best programmers at doing this

4. A boundary value problem in mathematics is a problem whose solution that
satisfies boundary conditions that act as constraints for the solution. More can
be learned on its Wikipedia page.

Why Game Engine Development is Worth Learning 5

sort of thing are able to make it fit really nicely at the end, so both sides
can be happy. I’d like to give a shout out to Allen Webster5 for that,
he works at RAD Game Tools now. I’ve talked about those two
things separately before, and he pointed out that I need to con-
nect them.

Competence, Coding Style, and Working in Teams

Casey’s Definition for a Competent Programmer

Part of developing a good programming style has very little to
do with things that people normally focus on, which are minor
things like “Did I overload operator=6 to prevent a copy”. They
focus on all of these rules that they never even tested. They
ignore the most important thing which, in my opinion, is how
easy is it to read your own code later and know exactly what
it does. This is also why I tend to not comment code until it’s
“done done,” because I find that the comments end up being
out of date and counterproductive. Since the comments are
describing the thing that was before the latest one, it’s actually
worse than having a no-comment.

So that’s I think what keeps Handmade Hero so flexible and easy
for me: To not have to worry when I come back to it on a week-
end to start doing a stream. I know part of being a competent
programmer is writing code in a way that doesn’t require me to
keep it all in my head. I can easily go look at the function names
and I just know what they do.

This is doubly easy if I’m the programmer, because I know
what assumptions I make and if I just always make those same
assumptions then I know I don’t have to investigate those things
further. I know I’m not gonna call “new” in the middle of a thing
because I never do that. If you develop a programming style
that you find is effective, simply leaning on that style in your

5. Allen is an entrepreneur and engineer interested in working on the tools that
drive digital creation. He is currently working on "4coder", a programming
environment targeted at the problems of real-world high-end C/C++ problems,
under the Handmade Network.

6. Overloading an operator replaces the functionality of that operator for a given
class. For example, you could overload the assignment operator + on a list
object to instead add the given other object to said list object.

6 Behind the Black Box

own code will allow you to keep it flexible and easy to remem-
ber.

I think those are the two aspects. One of them is about becom-
ing a good programmer, which is making sure that your style
actually pays real benefits and not hypothetical unproven
things. The other one is keeping the code small and straightfor-
ward. I think people overstate the difficulty of Handmade Hero;
it’s not that hard when the code is that small. If I tried doing that
on the Unreal Engine codebase, I would not be coming back to
it and know exactly where I left off. I’d be completely lost, and
have to step through it in the debugger for six hours before I
really knew.

Everyone’s Own Coding Language

In a similar way, working with different peoples’ coding styles is
probably one of the biggest problems in programming today. If
you imagine that programming is a two-part process, there are
two things that are going on at any time. One is coming up with
a “language”, and the other is speaking in that “language”.

In the industry, we talk about having a programming language,
but we really don’t have one that we use. What we have when
we talk about a programming language is the building blocks
for the actual language that we will use. It should probably be
called a “programming alphabet” or “programming phonemes”
if we’re honest. Because what happens in a game engine is that
first you take the language that you have, like C++, and you build
your own “language” on top of it. This will be a sort of functional
language of core things that everyone will use. It’ll be used to
talk about things like how the memory is managed and how to
implement the render pipeline and how do we pass things back
and forth, what is the job control7 story, and so on.

Those specifics form a secondary language. It’s a very recursive
process. You could think of it as making lots of languages on
top of each other. Some programming languages and projects

7. Job control is the control of multiple tasks on a computer system that may be
“in-flight” at the same time. It requires proper allocation of resources and
locked access to prevent deadlocks and failures.

Why Game Engine Development is Worth Learning 7

are so poorly thought through that they end up with languages
on top of languages on top of languages. If you think of each
programmer as having their own ideal language they would like
to see, that’s the substrate that’s right on top of the regular lan-
guage that they all had to conform to. They’re all fluent in that,
presumably their own one. So when you bring two program-
mers together you essentially have a problem where they need
to write a book together but one speaks French and the other
speaks Spanish. They have to figure out how to come together
to write the book, which would have to be in a Latin style typog-
raphy but not actually in either of their languages.

So I think that the jury is still out. I might even say that the
appellees and the plaintiffs and defendants are still out on what
the right way to do that is. There’s certainly pro-
crustean approaches where companies will demand everyone
have this many tabs and every class looks like this and there’s
a file for every block. It’s like everyone must conform. There
are other places that use a more laissez-faire approach, and they
hope that everyone will figure out what to do at the boundaries.

I think that we don’t know the answers to what’s right about that
and I would be absolutely lying if I said I thought I had a good
solution to it.

Fluency, Efficiency, and Cooperation

There is no question in my mind that there is a loss of speed,
efficacy and quality of code that comes from shifting from your
native language to another one. Shifting from your native pro-
gramming style into somebody else’s costs you. You have to bal-
ance that cost against the fact that if we have more competent
programmers on a project, assuming each of them is capable of
writing something useful for the project, we can get more done.

While working on The Witness, I took a pretty massive pro-
ductivity hit working in that codebase compared to my own.
There’s nothing you can do about that. I did build some of my
own language in there. I put some of my own tools in there
over time so that I can be effective, but it was on an on-demand
basis. There’s an entire article I wrote about a time when I had

8 Behind the Black Box

a bug, which only came up because I made a wrong assumption
about the math library. And that’s the reason that I and Jon Blow
are both able to write certain types of code quickly — because
we both make assumptions about what our math libraries do. If
we couldn’t make those, we’d literally have to read the code for
cross-product8 or something, every time, to figure out whether
it was right-handed or left-handed. The process would be much
slower and there’d be way more bugs.

It’s really hard to overstate just how important that is. I think a
lot of people don’t necessarily realize it, because when you pro-
gram your first engine, you’re usually not a very mature pro-
grammer. If you’ve never written an engine alone after you’ve
had a lot of experience and are more self-confident in your
skills, you may not realize how fast you actually are when every-
thing is done the way you expect, because you’ve only ever done
it at Valve or something where everything works maybe a little
bit differently than how you would want it to. And so it’s a very
important thing to be aware of.

On that front, I think working with an existing engine would
be really good for engine programmers to start with. In an
engine that’s made a bunch of decisions, whether they’re right
or wrong, you have to live with them. Because that’s probably
going to be your job when you’re first starting out. For example,
the Unreal Engine does different things wrong but you can’t
change those because they’re baked in the architecture. So it
would be important for new engine programmers to learn how
you make these improvements, or how you make this one part
better.

Handmade Hero as a Learning Tool

The goal of Handmade Hero was to stream it, because I wanted to
have that complete record. I thought there were things people
would learn by watching an engine programmer just do what

8. Cross-product is the 3D math operation where the input is two vectors and the
output is one vector that’s perpendicular to both input vectors. However, the
direction of the output vector depends on whether the space is defined as left
handed or right handed.

Why Game Engine Development is Worth Learning 9

they do, rather than just telling them the result. I think it’s been
really good at that because I’ve had many people actually tell
me that that was a big breakthrough for them. They would say,
“Seeing what you actually do totally makes me feel more com-
fortable about doing this.” So that, I think, was the main thing I
was trying to do with Handmade Hero.

That’s what I hope people get out of it. Everything else I have no
idea, because the goal wasn’t to teach people, say, 3D math. I just
do that because I wanted people to see an explanation of those
things as we used them. I don’t know if it’s a good way to learn
it and I don’t know what other things would be valuable. If I was
gonna make a course for people to learn 3D math for engines,
it wouldn’t look like Handmade Hero. So there’s definitely a lot of
room for more learning materials, regardless of whether or not
such resources are available right now.

So I don’t think that Handmade Hero is the best we can do for
learning specific, individual topics. I can say that for sure,
because if I sat down to make something like that myself, it
wouldn’t look like Handmade Hero.

I don’t think you ever want to use any one programmer’s ideas or code
as your sole resource. The reason for that is because everyone’s
brain works a little differently. That means the most efficient
way to think through a problem is not the same for every-
body. Unless your brain literally works exactly the same way
that mine does (and there may be some people out there whose
do), then the chances that my streams are telling you literally all
the things you might want to know about programming is zero.
There are going to be very valuable approaches and things that
I might not be aware of that you will find effective. So I think
it’s important for a programmer’s brain to be able to distinguish
between those styles in a concrete way. That’s the way you can
find the primary styles that work for you.

As I got better at programming, I found myself actually think-
ing, “How do I figure out what elements of programming style
are good and bad for me?” I don’t care what people write in
these books. I’ve realized that they don’t really know what

10 Behind the Black Box

they’re talking about a lot of the time. I want to come up with
ways I can evaluate this stuff for real, and I want to see how it
works when I do it. I felt like I became a much better program-
mer when I realized there was a really big divide between the
prevailing theories and actual programming practice. I think it’s
important for programmers to try to cross that divide for them-
selves. They’re not going to cross it by watching a series like
mine and assuming that everything I do is right. Even if every-
thing I did was right for them, they still wouldn’t have developed
the critical faculties necessary to know why. I also suspect that
for most programmers, not everything I do in the exact way I
do it will be the way that they should do it, because they will go
on to find different techniques that are better for them.

It’s the Process, not the Product

If I had to start from square one on Handmade Hero, obviously
there are things I would do differently, but that’s because the
point of Handmade Hero and for recording the process was that I
wanted people to see me go down a few avenues before picking
the one I wanted. I wanted them to see how an amorphous,
unstructured piece of code resolves into a structured one.

For example, one thing we did over the past three weeks was
we made the renderer into a standalone DLL9. Now anyone can
use it to make a renderer that does all the things that Hand-
made Hero’s does. So the depth peeling10, sprites, and the camera
code… all that stuff is in a separate library now. So if you wanted
to make a game that has an instant 3D-hybrid sprite block ren-
derer, you just have one.

Those are exactly what I wanted people to see in Handmade
Hero. So if I lost the whole thing, I almost would say I would
start a different project. If I was going into Handmade Hero with
the knowledge of how everything worked out, it would totally

9. A DLL is a dynamic-linked library which is Microsoft shared library concept
which can be transported around easier than a project and contains informa-
tion about the compiled project.

10. Depth peeling is a method of order-independent transparency when render-
ing 3D geometry. It determines what should be drawn on top by rendering
multiple passes of a scene and comparing depths.

Why Game Engine Development is Worth Learning 11

ruin the entire point of the series. Watching me type in code I
already know how to do isn’t worthless, but that’s what a blog or
GitHub repo is for. On Handmade Hero, it was critical that I not
have a solution in mind when I started.

Reusing Past Subsystems

Utilizing code from past projects is not something I’m an expert
on. I’m only 42 years old! Maybe when I’m 82 I’ll be able to tell
you if I had a piece of code that was worth reusing. There are
a couple of things I can say along those lines. For the very first
time, on 193511, which is the main project I’m working on now, I
decided that I never want to write a platform layer or standard
library again. I’m expecting honestly this project is probably a
five-year project, which is a long time for one programmer. It
wouldn’t be that much for a team if you think about it in pro-
grammer years, but for one person it’s a lot.

So on this project, I felt like I was ready to do that for the
first time. Whether it succeeds or not, I’m not sure. But what I
will say is I took an approach that was slightly different from
approaches I had taken before. I documented the whole devel-
opment process. I have a notes file, and every time there is a
question about what I’m going to do in the codebase, I docu-
ment exactly why I thought there was a question. I discuss the
solutions that I’ve tried. Finally, I explain why I ended up select-
ing the solution I did out of the ones that I tried. So there is liter-
ally, for the first time on any product that I’ve ever done, a 100%
complete documentation of why every last thing works the way
it does. Before this project, I never sat down and committed to
thinking all these things through, because a lot of times to do a
platform layer you just do it.

Justifying Brought-In Systems

Even for myself — who advocates a very limber style of pro-
gramming where I don’t think you do a lot of upfront design
— even I want to spend more time recording and justifying
decisions. I don’t do them from the top down like a UML dia-

11. 19351935 is an upcoming game from the MollyRocket team, which includes Casey.

12 Behind the Black Box

gram12 disaster situation or anything like that, but I do feel that
a higher level of rigor is necessary. What I try to do in this sit-
uation is sort of play the devil’s advocate; as if I was more than
one programmer. I try to come at it from different angles. Can I
justify it from a speed perspective? An ease-of-use perspective?
A compatibility perspective? So we’ll see if it works. Ask me in
ten years!

Builds: Keep ’em Simple

In our current weird programming culture, there’s a term called
“build engineer”13. All I can say about that is the way to approach
a build is to realize that computers today are so fast that almost
any game engine you care to make, especially on a team as small
as yours, can be built with a batch file in like ten seconds. Any-
thing you do more complicated than that is a waste of your
time. People throw in integrated continuous build servers and
CMake14 and Ninja15 and distributed builds and Python, but
none of it is necessary. All you need to do is just make a thing
that says “compiler, here are the files, this is the executable I
want, build.” That’s it!

On Handmade Hero, we showed how to do this on the first day.
You don’t need anything more complicated than that and I
would encourage you to start there. Eventually, somewhere
down the line, there are some arguments to be made for doing
some of the slightly more complicated things, like a continuous
integration server when you have multiple platforms. This is
just so that not everyone has to have every devkit to make sure
they don’t break the build. Otherwise, a single-line build is the
build you want. It shouldn’t be more complicated than that.

Interview conducted September 8, 2018.

12. Unified Modeling Language (UML), whose purpose is visually representing a
software system with its actors and roles so that a programmer can better
understand and design said system. Sometimes, UML diagrams can end up as a
“disaster situation”.

13. A build engineer is in charge of the infrastructure that builds a software appli-
cation, as well as testing and troubleshooting code for before the software’s
release.

14. CMake is a cross-platform, open-source application for managing the build
process of software in a compiler-independent way.

15. Ninja is a small build system that is designed to run builds as fast as possible.

Why Game Engine Development is Worth Learning 13

An Engine Developer's Toolbox
Jeff Preshing

JJeff Preff Preshingeshing is a programmer with
close to 20 years of experience work-
ing for various game companies and
non-game companies. He recently
wrote a C++ game engine from
scratch and is using it to make a dope
cartoon-action game for mobile. You
should follow his blog at
preshing.com. He likes rock climbing
and Vindaloo curry.

The Arc80 Engine Architecture

Back when I was starting my career, I considered myself a good
programmer, but I would look at existing games and game
engines and just be unable to even fathom how everything all
fits together. That’s the most confusing part, and to illustrate,
I’ve provided my own engine’s architecture here. This can give
you an architectural overview of my own game engine; it’s
something that I would have liked to see early on in my career.
You can find other overviews like that online, but having a par-
ticular view of the modules, the dependencies1 between them,
and how an engine goes from high level to low level is a good

1. Dependencies are links that are required between programs, such that one
program is reliant on another.

start. That was by far the most confusing thing: Getting the big
picture of it all.

Arc80 Engine Overview

An Engine Developer's Toolbox 15

Engine Design Principles

I have my own set of personal design principles behind how I
write and maintain my own engine. They probably won’t apply
to anybody else, but that’s what I’ve chosen and I think it’s an
interesting way of looking at things.

To the extent that I can, I avoid building custom tools. I don’t
want to spend time building them. That’s a big part of real AAA
game development at a studio—because you’ve got hundreds
of people on the team, the investment that you make in user-
friendly tools pays off. That said, it’s a big investment, and for
me personally, I don’t want to spend time on custom tools. To
get around that, I leverage Blender2; I do all my level editing and
character design in Blender.

Another one of my personal design principles is that I always
want to focus on the application running on the device. All my
effort is targeted at keeping that lean and mean and efficient, so
rather than focus on tools, I focus on the game application itself.

The other principle that I follow to an extreme is maintaining
reusable modules, because everyone likes modularity. The way
I make sure that my modules are reusable is by building small
applications that compile and link with individual components,
and I can’t do that unless the components are decoupled from
each other. When I say components, every small box on my
architecture diagram is a component. Each one has its own
directory of header files, and when each box is compiled, it’s a
library and it has access to the headers of specific other mod-
ules that it’s allowed to depend on. Because of that, I’m really
aggressive in terms of modularity. What I found at game studios
is that engines tend to be monolithic code bases, so I’m deliber-
ately making an effort to go the other way. I would almost say
that what I’ve got is more of an SDK3 than an engine—I just hap-
pen to be making a game out of this SDK.

2. Blender is an open-source 3D computer graphics software used in creating 3D
models, animations, and interactive applications.

3. A software developer kit (SDK) is a set of programs used in developing another
program.

16 Behind the Black Box

Creating Your First Engine

For my own engine, I write everything. I’ve written my own
containers, string class, and file system class, which includes the
physics and the audio engine. I use almost nothing from the
standard library, except for type traits4. If you’re a novice game
engine programmer and are setting out to do your first project,
you don’t want to do that. For everything that I’ve written, there
are really good open-source equivalents.

So I don’t know if it’s a good or bad idea, but one way to build
your own initial game engine is to look at it as an integration
exercise: Go get GLM5, download Bullet6, download some ren-
derer like Horde3D, and so on. You’ve got libraries for a lot of
things, like libraries that import 3D models and everything, so
you can stitch together an engine out of those. I think that’s
a good way of going about it, since it will expose you to the
interfaces to each component. That’s the best starting point, and
then depending on how your needs evolve, maybe you’ll end
up opening those black boxes and modifying things under the
hood. For a beginner, you can integrate available code rather
than doing everything from scratch, because that’s taken me a
long time. But that’s just my style.

Skills of Engine Development

These were skills I didn’t expect to need in the beginning of
my career, but I ended up developing them during my career.
The reality is that every engine programmer ends up exposed
to them, so don’t be surprised to find yourself getting better at
these skills by necessity.

Systems Integration

I call the first one Systems Integration. It’s actually a big cate-

4. Type traits define a compile-time templated-base interface to query or modify
the properties of types.

5. OpenGL Mathematics (GLM) is a mathematics library based off of OpenGL
specifications, that contains definitions for typical math constructs used in
graphics.

6. Bullet Physics is a real-time physics simulation library, a physics engine, which
simulate collisions for soft and rigid body dynamics.

An Engine Developer's Toolbox 17

gory, as it has to do with integrating third-party libraries—tak-
ing separate codebases and making them build and link
together to run as one thing. Another systems integration exer-
cise would be porting to new platforms, as well as doing big
three-way merges (you’ve branched a library, integrated it at
some point, then maybe you’ve made changes both to your
code and inside the library itself). That happens a lot in the
industry; months later, there’s a new version of a library you
want to integrate, which is the latest and greatest of that depen-
dency. That can end up being a huge task that can take weeks or
months to accomplish.

Between all of those things, Systems Integration is a valuable
category of skills to have. However, a lot of C++ programmers
want to avoid it because they hate it. Many C++ programmers
hate integrating libraries; they want everything to be a header-
only library, just to make their lives easier. If you learn how it
works, though, you’re doing yourself a big service. Getting more
familiar with it and tools like CMake7 to help you generate build
pipelines instead of tweaking Visual Studio properties is just a
good skill to have. It’s especially useful when you’re going cross-
platform.

Low-level Debugging

Low-level Debugging is another great skill to have, especially
when you are tracking down crashes in the final optimized
build. Especially at the end of the project, you’ll have testers
hammering on the optimized build, so there’s bound to be
crashes and issues that don’t happen in a debug build. The abil-
ity to diagnose and fix those bugs is useful because you want
to ship a stable game! How you develop that skill is a different
story, but at some point, you or someone on your team will have
to go into the disassembly8 window or the memory view and
figure things out at that level. It’s kind of considered a black art,
which is a bit of a shame because it doesn’t really have to be.

7. CMake is a cross-platform, open-source application for managing the build
process of software in a compiler-independent way.

8. Disassembly is the assembly language, translated from machine code, of a pro-
gram; it is the compiler’s version of the program.

18 Behind the Black Box

I started developing my low-level debugging skills when I had
no other choice but to figure it out. In 2005, we needed to ship
a project but it kept crashing. I knew it was possible to solve
the problem because, at an earlier job, I had a teammate who
would constantly go look at crash dumps and disassembly and
memory views. I would always think, “What the heck is this guy
doing?” I asked him how he did it, but he never explained it to
me; he just said: “I like computers.” So I knew that was a skill
that was possible to have. I don’t remember exactly how I picked
it up, but at some point, that became my bread and butter at
Ubisoft. My teammates there would always come to me to if
they had a crash and I would help them out. Eventually, it got
to the point where Ubisoft started giving an in-house course on
this subject. In my experience, it’s something that’s passed on
from one person to the other, and yet no one really seems to
want to get down to that level. Everyone’s more interested in
what sort of high-level programming paradigms can help us be
more productive, but the most productive thing is to ship the
game, and to ship the game you have to fix these issues at a low
level.

Profiling

The next skill on the list is Profiling. Everyone agrees that it’s
important—you want to profile before you decide where and
how you should optimize. How you use profilers is kind of sim-
ilar to low-level debugging in that it’s a skill passed on from one
person to another on a project. I would point to a talk I gave on
profiling at a student conference. I think it’s a pretty good intro-
duction to the different types of profilers and examples of how
you would use them in practice.

Concurrency

The fourth skill worth developing is Concurrency, or multi-
threading, which is probably no surprise considering everyone
talks about it. Everyone knows it’s part of life as a game devel-
oper.

An Engine Developer's Toolbox 19

Iterative Development

Number five, Iterative Development, is the ability to look at
feature goals and envision how it’ll work at a level. If you can
break that into bite-sized tasks and decide what’s your rollout
plan (which tasks you’ll do in what order) is a good skill. Man-
agers love it because they want these enumerated tasks, which
helps them create a schedule.

Development Journal

I also think an engine developer should keep a Journal. When
you’re working on a task or debugging a problem, you might
open NotePad or a text editor and start taking notes, you could
copy and paste call stacks9, and maybe you take notes when
you’re researching things on Google and Stack Overflow or even
while brainstorming. I especially make a lot of notes when I’m
brainstorming—looking at all my options and alternatives and
trying to figure out what’s the best one.

So when I talk about keeping a journal, I’m not talking about
keeping a diary of what I did each day. What I mean is having
a place to store your notes so you can go back to them in the
future. The way I personally do this is I have a folder full of text
files, and it’s just organized by date. I don’t even try to organize
by category. I just have one text file per month and at the start of
the day, if I have something to note, I put a heading for the date
and I jot things down. I can’t work without doing that personally,
because I’m constantly trying to remember what my observa-
tions were on a subject in the past. It’s great to be able to search
that directory of my notes and refresh my memory that way. I
think it’s a useful skill, but maybe every person has their own
way of working in that respect.

Reflection and Serialization

The next two things on my list of skills are Reflection and Seri-
alization. In the industry, every game engine has their own

9. The call stack is a stack data structure that stores the information about the
active routines of a computer. It can be walked up or down into the callee func-
tions and function definitions, respectively.

20 Behind the Black Box

approach for this. You don’t even need to have an approach
at all, but just be aware that there are varying approaches to
reflecting data structures. There are different reasons to have
reflection, ranging from serialization to managing shader para-
meters to networking. Being able to think in those terms is a
particularly useful skill for game development because C++ has
nothing for runtime reflection. Well, there is RTTI10, but RTTI
doesn’t provide any information about data members, so it can’t
help you implement things like serialization.

Professionalism

The final thing is a soft skill: being Professional. You’ll have
to do most of your work on a team, so obviously it’s a matter
of treating your teammates with respect. This was a mistake I
made at the beginning, when I really wanted to advance in my
career and I really wanted to shine as a good contributor to
the project. A better way of thinking, though, is to help make
sure that the game ships. Five to ten years from now, no one
will remember who shined and who didn’t, but if you have a
shipped project on your resume, that’s like currency; employ-
ers love to see that. So you need to stay professional and not
get attached to your way of doing things. Letting other people
tackle the problem their way, even if you don’t think it’s the best
way, will minimize friction on the team, and that helps the game
ship.

Console Development Experiences

The first time I did a seek-free loading11 system, it was only for
the Xbox console on the game Rainbow Six: Lockdown. Since we
were loading from DVDs, seeks12 were expensive, so you wanted
to avoid them. My job was looking at the problem of how the
game is opening all these files and reading from different places.

10. Run-time type information/identification (RTTI) is specific to C++ in that
information about an object’s type is available at runtime.

11. Seek-free loading is a system which is able to read a file “free” (without) “seek-
ing”, (searching) a file, for data/position within a file. Seeking causes disk activ-
ity which is generally slower than CPU performance.

12. A seek is a programming concept related to file reading, where a program has a
file pointer associated with a position and a seek moves the pointer to a specific
position within that file.

An Engine Developer's Toolbox 21

All I did was implement a mode where the game runs, and as
it starts up it’s logging which files it’s reading from and in what
positions. It then takes that data and makes a linear version of
the same data with no seeks. I also added another mode of run-
ning the game that uses the seek-free files, so I was able to just
focus on the strategy of how and when the data is accessed. That
also included fallbacks, so if the game loaded a little differently
the next time, it wouldn’t totally break. At that time, though, I
didn’t have to worry so much about platform differences. The
second time that I did it I already had experience with the strat-
egy, but I had to do it in a cross-platform way: for PC, PS3, and
Xbox 360.

That meant it was just a matter of reimplementing the same
thing, but using cross-platform primitives. The engine already
had some cross-platform wrappers for low-level things like
opening files and such, but not everything. I remember on the
PS3, there was a limit to how many files you could have open,
and that limit was very small. At some point, I had to make a
wrapper layer between the engine and the hardware that let the
game pretend it was opening a lot of files, but if it wasn’t actually
reading from those open file handles—I was closing the files and
it would be opening them on next access.

The reason I had to do a lot of PS3 optimization was that the
Rainbow Six: Vegas engine was actually a branch of Unreal
Engine 3. That project actually branched very early, before
Unreal 3 was even officialized, so we didn’t have a lot of the work
that Epic Games did that we could just integrate. That was actu-
ally one of my favorite projects because when Rainbow Six: Vegas
shipped on PlayStation 3, it didn’t perform very well: It was pix-
ely, it was blurry, and it had a low framerate. But on Rainbow Six:
Vegas 2, we optimized things and made it look good. The PS3
version almost became indistinguishable from the Xbox 360
version. We didn’t even use the SPU’s13 a whole lot, as I recall. I
remember SPU’s were used by audio mixing, but I don’t recall
that we used them for the engine itself. Most of it was basics, like

13. A Synergistic Processing Unit (SPU) is the processing unit associated with the
Cell architecture of the PS3. The PS3 had seven as part of its hardware, only six
of which were usable by game developers.

22 Behind the Black Box

making sure you had the best frame buffer14 pixel format for the
GPU because the PS3 needed a specific set of conditions main-
tained for Z-buffering15 to work in the optimal way. It was hier-
archical Z, and it was very easy to break that, so using the tools
that Sony gave us to identify where it was broken and fixing
those, that was a huge boost. Avoiding redundant state changes
being sent to the GPU was also a huge win. So a lot of it was
basics, not crazy concurrent SPU stuff. I saw a lot more SPU stuff
on later projects, but I didn’t gain that much experience devel-
oping for SPU’s myself. I did a lot of debugging on them for
sure, but not so much on the development side.

How Profiling Can Differ

Profiling on Child of Light was completely different from profil-
ing on Assassin’s Creed: Unity. Child of Light was a much simpler
game engine by far; when you put the controller down and let
the character sit there in an environment, activity on the CPU
and GPU was pretty consistent from one frame to the next. With
Assassin’s Creed: Unity, on the other hand, it was a totally different
thing because the assassin was often in a crowd, and the crowd
is walking all over the place and bumping into each other. That
movement causes a lot of fluctuation in CPU activity from one
frame to the next, and that made it harder to profile. It kind of
bummed me out a little bit, but it seemed like most of the Assas-
sin’s Creed team’s approach to optimization was just moving stuff
around from one core to the next. They have this job system
and you capture a profile and you see which jobs ended up on
which cores, and if there were holes in the schedule, they would
try to move jobs around. There was not as much direct opti-
mization going on. To be fair, it was such a mature engine that
it was hard to find those optimizations.

14. Frame buffers are a portion of RAM containing a bitmap of the display, con-
taining the data for that given frame on the video display.

15. The z-buffer also known as the depth buffer, contains information regarding
the distance from the camera, the depth. Z-buffering can also refer to the tech-
nique in which pixels are culled from the frame, not rendered, because another
pixel’s depth is closer to the camera, therefore the pixel in the background is
being covered.

An Engine Developer's Toolbox 23

The Game Engine Marketplace

If you ask me, “What’s the next big thing in game engines?” I
would say the Arc80 Engine, obviously! Just kidding. I mean,
I would love it if I could use the Arc80 Engine for the rest of
my career. But I don’t believe in the “next big thing” in terms
of a predetermined path that the industry is inevitably walking
along. Right now, there are people who think that real-time ray
tracing will be the next big thing in game engines, and there
are people who think that cloud gaming is the future. I don’t
know about either of those things. I do know that history is lit-
tered with inventions that people thought were going to become
huge, but weren’t, because market forces just didn’t support the
idea.

Game engines are just another marketplace. The ideas that suc-
ceed in this market will be the ones that meet a demand, either
by enabling more interesting games for consumers, by making
developers more productive, or both, or in a different way alto-
gether. The only way something will become “the next big
thing” is if an idea is so good, so compelling that a big segment
of the industry adopts it. But by necessity, that will always be
hard to predict, because if an idea was both compelling and
obvious, people would already have adopted it! The point is that
the future of game engines has not yet been written. As engine
programmers, we’re the ones who get to write it.

Interview conducted October 24, 2018.

24 Behind the Black Box

Engine Programming is All Plumbing
Amandine Coget

AAmandine Cogetmandine Coget is a French game
engine plumber living in Stockholm,
freelancing after having worked on
the Frostbite and Bitsquid engines.
Other interests include crafts, poli-
tics, and the politics of crafts.

About Amandine

You can probably guess from the name that I was born and
raised in France. I also studied there; the degrees I took were
programming oriented but not game-specific. Half of my stud-
ies were computer related (what French calls “Informatique”)
but the other half was mathematics, economics, communica-
tion, and accounting. That has been extremely useful in my
work as a consultant. Ironically, my most useful class has been
accounting.

Career-wise, I spent three years at DICE working on Battlefield
4 and the Frostbite Engine. After that I spent six months at Bit-
Squid1, and have been freelancing since then. As for my hobbies,

1. BitSquid, more modernly known as Autodesk Stingray, is a discontinued game
engine from Stockholm, Sweden. End of sale was announced for January 7,

there’s weaving which I’m trying to take beyond hobby these
days, there’s making my own yarn, and there’s a bit of glass-
blowing and ceramics.

The Modes and Pipeline of an Engine

When I was starting out in engine development, the most chal-
lenging aspect for me was how much of it is actually related to
the pipeline. With small projects, you generally have the data
directly in files, like images and such, and then you’ve got the
game executable which just loads everything. As soon as you’ve
got big projects, though, you will have data that gets processed
by a pipeline and then used by the game. So typically you will
have a game executable that can run in several modes: it can run
as a tool, or it can run as a game. That was initially tricky to wrap
my head around: that you had one executable running in differ-
ent modes and that the code you wrote needed to work in every
one of those modes. That’s something you don’t encounter on
small projects, because all you need to do there is something as
simple as loading the PNGs. For example, if you’re working on
mobile, you’re going to want compressed file formats, and you
can do that manually by running a standalone tool, or you can
have an integrated game pipeline that just processes all the data
into compressed formats efficiently. That’s the part that is rarely
taught because, again, pipelines are only relevant for large-scale
projects.

I would argue the pipeline is always part of the engine because
it is something that’s so tightly connected to your runtime —
the same team will usually be working on it. The pipeline could
be one standard executable that’s compiled with different para-
meters, or you could pass different command line parameters
to your game, but the basic idea is that you don’t just have a
“single” exe file. You’ve got those different modes and config-
urations. It also ties into multi-platform development because
when you have so many paths, it takes a mindset shift.

2018, and afterward it became a plugin for Autodesk 3DS Max known as 3DS
Max Interactive.

26 Behind the Black Box

Onboarding for Programmers

In my experience of onboarding, a specific point of frustration
is the lack of up-to-date, complete documentation. This is espe-
cially the case for programmers. We usually have resources for
content creators because there’s a lot more churn with content
creators. Artists, arguably designers, and scripters are the people
at a company that change a lot between and during projects. I
mean, you know by now that the game industry feeds on blood.
As such, programmer onboarding is rarely as developed even
though it requires just as much explanation. Programmers new
to a codebase need documentation highlighting the company’s
established process, and time to find their way around the code.

I remember when a new co-worker joined my team on Battle-
field 4 and was just starting on her first feature. She asked some-
thing, so I directed her to someone I thought knew the answer,
who directed her to someone else — I think there were like
four or five people in the chain — and eventually, the ques-
tion circled back around to me. You’ve got this problem of
knowledge tracking and documentation; figuring out where the
knowledge lives. In the end, knowledge management has been
the hardest part of onboarding for me. While other industries
have entire teams working on compiling knowledge, the games
industry typically doesn’t. I think that along with the high rate
of turnover where we lose people and therefore knowledge, not
having proper processes in place or rarely having tech writers
will hurt us. To remedy this issue, it helps to follow good, read-
able code practices. Comments and documentation can help,
but then they have to be kept up to date.

As for new programmers being dropped into this scenario, the
big thing is resisting the urge to say “this is crap” early on. The
urge to criticize will always be there, and the criticism is often
valid. Three months later, though, you get the context and the
history, and you’ll understand why things are done that way.
In fact, when working on the Customization screen for Battle-
field 4, which was my big system rewrite, it was a mess but the
deeper I went and the more I re-implemented, the more I came
to understand why the previous decisions were made. Give up

Engine Programming is All Plumbing 27

on the idea of writing perfect code — it will not happen, I’m
sorry to tell you.

And here is another thing you may not want to hear, but in
my experience, after the onboarding, a solid 98% of an engine
programmer’s job is plumbing and legacy management. Even if
you do write new code, a lot of it will be interfacing with the old.

I think only experience can teach you how to best modify old
systems, because as you build up experience, you build up what
I like to call the list of bullshit factoids. Just small points about
how your actions can backfire, or certain quirks an API has. As
you build up this list of factoids, you build an instinct. While I
have six years of experience under my belt now, I’m well aware
the people who have been doing this for 15 or 20 years will
have a much more refined instinct. However, they might also
be bogged down by old factoids that aren’t relevant anymore.
That’s why it’s good to have a team that’s a blend of ages, expe-
rience levels, and backgrounds, because you can have different
instincts that can work together.

Thinking about Usability

Going from working on UI programming to graphics to core
systems, the biggest thing I’ve noticed is that it’s become impos-
sible for me to ignore usability. In a way, UI is all the way at the
end of the slope, because you will get feature requests from the
gameplay team and your work comes at the end of the process.
You’re the last one to come in when shit rolls downhill, so you
will run into every corner that was cut every step of the way. A
part of that work is fetching data from the gameplay code, so if
corners have been cut in gameplay code, your UI won’t work.
When the gameplay team comes in with last-minute changes,
meaning the UI has to be changed, it starts getting messy really
quickly.

This reinforces the focus on users, talking to your users, and
thinking about usability in general. It’s not as common for pro-
grammers on a standalone engine team to talk with designers.
But I’ve kept the a habit, even for engine features, to talk with

28 Behind the Black Box

my users a lot. When I was on the rendering team, for instance,
I needed to understand if I was on the right track with what
was wanted of a feature. Since I was in the DICE offices, I just
grabbed an artist, sat them down in front of my computer,
and asked them to try to and use what I’d built. This plan
really worked because they immediately tried to do something
I hadn’t thought about!

Because of that experience, I now regularly ask others if my
tools are confusing to use: even if it looked great on paper,
what’s the interface like to the user? Your user can be a pro-
grammer as well, so you can apply this same UX mindset when
designing APIs. I spend a lot of my time “fighting for the users”.
I absolutely think a large-ish engine team should always have
a dedicated UX designer on hand because it really is a skill. As
programmers, we have the nasty tendency to think that we can
just figure it out and come up with a decent enough interface on
our own. But there are people who study usability for years and
know what they’re doing.

GUI: Immediate vs Retained Modes

When it comes to what form of GUI to use, as always it depends.
I haven’t followed how Casey’s take on IMGUI2 (IM) has evolved
over the last few years. For context, while I was working on Bat-
tlefield 4, what we were doing was shifting the entire UI from
using Scaleform3, which is heavily retained4, over to something
that was more immediate mode and in C++. We rewrote every
last bit of UI in the game basically and what we discovered more
and more is where IM worked really well and where it broke
down. In my opinion, IM is great for simple things, so for debug
interfaces, small tools, or demos, it’s a no-brainer. As soon as
you need some degree of persistence, like with data-driven sys-
tems or allowing designers and artists to customize UI, you will

2. IMGUI stands for immediate mode GUI which is a code-driven GUI system
where on each rendering frame the application needs to issue the draw com-
mands of the GUI (the GUI is not stored for multiple frames)

3. Scaleform is a vector graphics rendering engine used to display Adobe Flash-
based user interfaces and HUDs for video games.

4. Retained GUI also known as canvas/scene graph, is where GUI is registered
once and is displayed, “retained”, on screen until it removes itself from render-
ing.

Engine Programming is All Plumbing 29

need some kind of extra layer. And that can be something that
gets baked down by the pipeline into something that’s more
immediate, or it can be something that actually exists at run-
time.

But at scale, I find IM code just gets really messy when you’re
fetching data from all over the place. This is especially the case
if you’re interfacing with a visual scripting system like Frost-
bite5 has, which we also call “noodles”. You need some kind of
persistent entity just so you can drag one of those noodles into
it, and while that gives a lot of power to artists and designers,
it gives a lot of headaches to programmers. Noodles are code;
they need to be debugged like code, and it turns out that artists
are good at making horrendously complicated things really fast.
For a project with the scale of the Isetta Engine, where you have
only three months, IM is the right choice. For a large AAA pro-
ject, though, I wouldn’t recommend it as the only approach.

If you can pair IM and retained modes cleanly when designing
your system, then it is absolutely a good idea to have both. Bat-
tlefield 4 did a little bit of that because the HUD6 was very imme-
diate mode-ish and so it had to be fast.

My main work on Battlefield 4 was the customization screen,
which is tons of small widgets controlled by a ton of data. Work-
ing on that screen taught me the biggest challenge with UI is
fetching all that data. In that case, having persistent entities that
just fetch the stuff once and hold on to it can help set up a nice
architecture, but it depends on your particular project. Render-
ing UI can also be challenging because you’re doing layered 2D
rendering with a lot of transparency, which modern renderers
don’t like. And with UI there will often be more string manipu-
lation than you would like, so you need to optimize that.

A Brief History of the Frostbite Engine

While Frostbite is known today for accommodating many game

5. Frostbite is EA’s proprietary game engine used across most of their studios.
6. HUD stands for Heads-Up-Display. It usually refers to overlay on the screen

that presents important information to the player.

30 Behind the Black Box

genres, it wasn’t designed to do so early on. It had some growing
pains. Each new game in Frostbite showed some shortcomings
or some things that were missing, and so the engine evolved
organically. That shows in the codebase, but I don’t want to harp
on Frostbite specifically, what can you do when you’ve got two
million lines of code supporting that many games and features?

For a bit of history, Frostbite was originally the Battlefield
engine, made by DICE in Stockholm. Medal of Honor: Warfighter,
which we like to forget about, was made on Frostbite as well.
Because that game was also an FPS, it was very close to Bat-
tlefield. The next game to use the engine was Army of Two: The
Devil’s Cartel, which we also like to forget about, which brought
third-person co-op. The Frostbite team needed to figure out
how to support that gameplay style and what updates needed to
be made to the engine as a result.

Need for Speed: The Run was the first racing game to use the
engine. It brought a lot to the engine tech-wise, because it
showed where things cracked. For instance, the Need for Speed
team made a bunch of things for The Run, like a road making
tool and handling a car’s speed. The vehicles in Battlefield are
done in a certain way, but cars in Need for Speed move differently,
which affects how to stream in new assets. So each game brought
new problems. Dragon Age: Inquisition was a massive challenge,
because you’re going from an engine designed for FPS titles to a
super-massive RPG with conversation systems and more. What
I know is that the entire serialization system and the entire sav-
ing subsystem had to be rewritten, for example. That’s terri-
fying to mess with, as you can imagine. Part of that challenge
fell to the Frostbite team itself, which at that point was divided
between Stockholm and Vancouver, and a lot of it was on the
BioWare engine people, who did an amazing job just taking
this immense codebase and making tools that they could use to
make their game.

Compartmentalizing Your Knowledge

In a big AAA game engine, you can’t see where things could have
been done better just by reading the code because it has over

Engine Programming is All Plumbing 31

two million lines. It’s so much that you can’t wrap your head
around the entire thing. So you will discover what you’re miss-
ing as you try to make things, and sometimes you won’t have
these realizations until the last second, and you discover that
the key connection is missing and that brings us back to plumb-
ing. Once you’re six months into production, you have to make
it work. Again, that’s AAA-specific — too big to fail. You can’t
know in advance, so you do as much pre-production, as much
research, and as much talking with other teams as you can, but
in the end you will just go in and see what breaks.

A skill I’ve taken from my time in AAA to my time as a con-
sultant is not needing to understand the entire codebase. When
you’re working with this huge, sprawling thing that breaks Intel-
lisense7, you learn to navigate the code without understanding
all of it. You learn to find the part you need to work on and only
figure that out, and you accept that you will never understand
the whole thing. Focusing on the smaller stuff has been a really
precious skill as a consultant because I can just go in your code-
base and find my way around in a week or two at most.

Versioning an Engine

Whether you decide to do versioning inside of your engine or
write a tool to change old data really depends on your data and
on your users. Can you afford to break retro compatibility8?
How annoyed do you get at an API that deprecates something
you’re relying on? Something like Unity, for instance, is heavily
bogged down by having to keep old projects running. Can they
afford to break old projects, though? Probably not. If you’re in
AAA and you’ve got a dedicated team that has to take the new
engine version all at the same time and will have months of
work put into this upgrade, you can afford to break old stuff (just
don’t do it without telling people, that’s not very nice). Can the
conversion be done automatically? Sometimes yes, sometimes

7. Intellisense is an intelligent code completion feature in Microsoft Visual Studio
that is capable of detailing information about the code and objects that the pro-
grammer is working with while coding.

8. Retro compatibility, also known as backward compatibility, is when a system is
setup such that it works with legacy code/input.

32 Behind the Black Box

no — it depends. Will Perforce’s automatic merging be able to
handle changes? Possibly, possibly not. I had the case of a for
loop being merged with a while loop so the counter was still

being incremented at the end of it, and we only had half the UI
rendering. When you are merging tens of thousands of files, you
are going to miss that.

This is why you have senior engineers who can guide you on
good choices to make, thanks to their experience and instinct.
You will have tech directors who call the shots telling you what
they’re going for, keeping all the trade-offs in mind. Producers
also help with this by keeping you on schedule, because in the
end you have to ship.

Parallelism and Data-Oriented Design

While working on parallelizing Stingray’s data compilation, the
biggest challenge for me personally was one very high-profile
SDK not being thread-safe9, meaning that you can only call
the “compile asset” function in a single thread; otherwise, the
engine breaks down. That’s the problem when you’re paralleliz-
ing: if you do it from the start, then you can make sure that
everything you’re writing is parallelization friendly, but if you’re
working with existing code and doing plumbing you’re going to
find all the ways in which it cracks and breaks. Does that hap-
pen because it’s using global variables in such a way that it’s not
thread-safe at all? Is it some other complex C++ nonsense that
makes it thread-unsafe? Parallelization itself isn’t hard per se —
though it’s tricky to do well — it’s mostly a challenge if you’re
using existing code that’s not thread-safe, parallelization ready,
and so on. Data-oriented design can really help with that prob-
lem, because when you’ve got tight data, it’s a lot easier to split
up the work. But if you’re not doing that, how do you handle
things like std::iterators10?

9. Thread-safe code only manipulates shared data structures in a manner that
ensures that all threads behave properly and fulfill their design specifications
without unintended interaction.

10. std::iterator is a C++ type that can be used to iterate through collections of ele-
ments based on that collection.

Engine Programming is All Plumbing 33

Exposing Data to the Developers

Knowing how to manage memory allocation between subsys-
tems is something that comes from testing, and exposing your
engine’s settings to data so the users can change it. Depending
on the game’s profile, there will be a lighter or heavier load on
different subsystems. So it has to be configured by the user. An
example would be if you’ve got a game that’s very effects heavy,
your particle system would probably need more memory than
it would in a 2D puzzle game that doesn’t have as many particle
effects. While for a 2D game, your UI system will probably take
a heavier load than the 3D system that you’re not using at all.

When it comes to developers abusing that exposed data, that’s
where the problem of whether your user is an expert or a neo-
phyte comes in again. Is it something that you can put in doc-
umentation, or something that should be impossible to abuse,
and cause a crash if used wrong? Is it something that should
just be used with caution? When you’re dealing with games in
particular, you will generally have users who are focused on
shipping and getting the product out the door the way they
want it. That’s why I am a strong advocate for engine source
access as well, because when you’re doing this last push three-six
months before finishing your game, you don’t care about keep-
ing it clean anymore; you just want to get the thing done so the
game can be as good as you want it and hopefully release on
time. Going back to what it means to abuse an engine, should we
assume that as engine developers, we always know best or that
in the end it’s our user, the game developer, who should get to
make those calls? I still don’t have the answer to this.

It’s All Plumbing

For a project like the Isetta Engine, aiming at showing what
game engine development is like, it’s very good to put the
engine together from existing code. Because that’s also true in
the professional world: you very rarely get to make features
from scratch. It’s all plumbing.

Interview conducted September 27. 2018.

34 Behind the Black Box

The Definition and Beginning of a
Game Engine

Adam Serdar

AAdam Sdam Sererdardar is a Senior Game
Engineer at Schell Games where he
works on projects that need server
technology, graphic effects, or frame
rate optimization.

Most recently, Serdar was part of the
team that created HoloLAB Cham-
pions, a virtual reality lab practice
game in which he was deeply
involved with its integral game sys-
tems, including how virtual objects

could realistically simulate solids and liquids and how they are han-
dled. When he’s not coding at Schell Games, where he has been
employed for twelve years, he is working on costume and robotics
development projects as well as learning, practicing, and teaching
Kung Fu.

A Game Engine and its Needs

A game engine is, in its broadest sense, a set of tools that enables
game creation. Depending on your platform, this could be as
simple as having a scripting language which makes it easier for
developers to interact and develop. Oftentimes an engine is a
collection of tools, an update loop, and a scripting language.
The Unity game engine accesses the update loop through the

MonoBehaviour1 system, as well as tool development with
ScriptableObjects2. An engine can also be a simple system which
has an update loop with rendering, giving the developer the
ability to display bitmaps on screen. The simple engine can be
expanded to have an animation system or other systems that the
specific game being developed requires. That engine will grow
and become more comprehensive as more developers spend
time with it.

Most engines are going to have some sort of graphics, some
sort of at least minimal physics, some sort of audio— mainly
because those are going to be your most common systems that
every game is going to want. Graphics are going to be one of the
most common things that your game engine will do. Graphics
of an engine can be simplified to the type of asset that needs to
be imported because the graphics engine only needs to support
these types of files. A simpler 2D game may only need to be able
to import bitmaps, but if you’re developing a 3D game models
with animation might need to be supported. However, I know of
at least three games off-hand that are completely audio-based.
They wouldn’t have any need for graphics. They’re just show-
ing a blank screen. They are more focused on audio bouncing
off physical representations of the environment, kind of like a
sonar-type game. If you’re building an engine that’s all about
simulating that kind of system, the engine doesn’t need to sup-
port graphics. Scripting languages are extremely nice to have so
that programming is simpler and less brain-taxing; however, it’s
not required and you can usually just write code in the exact
same language as the engine.

Engine vs. Framework: What’s the Difference?

If you think of the line between an engine and a framework as
layers, the lowest level is certainly the engine. As you work more
with that engine, you might find yourself developing a frame-

1. MonoBehaviour is the base class within Unity that all components which
attach to GameObjects must derive from, it has methods for start, update, and
destroy.

2. ScriptableObjects, are scripts which cannot be attached to GameObjects but
still store (serialize) user data.

36 Behind the Black Box

work, and the question of whether that’s part of the engine or
not depends on the number of users the framework has rela-
tive to the engine. The framework developed at Schell Games,
which is built on top of Unity, is exclusive to Schell Games and
the employees who take it home. That being said, sometimes
a framework can get folded into the engine. For our case at
Schell Games, that would require our framework to be assim-
ilated by Unity. Sometimes features in frameworks are built
prior to being included in the engine, and sometimes the spe-
cific implementation of the framework is better suited for our
development. A framework is additive: It’s a layer between the final
game code, which is very specific to a game, and the engine. The line
between the two is fuzzy; however, when there is game-specific
code shared between multiple projects it belongs in a frame-
work-type system. And although an engine is constantly being
updated, it is relatively constant and self-contained.

The Engine Dictates the Game

As you’re building a project, from a design perspective, you look
at the nails and hammers you have and you say, “this, this, and
this— those are great, we just need to add this extra nail.” And
sometimes this extra nail is system-level code. Or it’s game-spe-
cific code.

Having access to the entirety of your engine code does allow
you to take a feature you need and scope out what’s required
of the team. And in picking your game, you get a pretty good
idea of the features, so you know at least nominally what fea-
tures you want in your engine. In theory, your system should be
fine.

With our projects, we often have a little bit of that decision-
making for which engine we are going to use. Some of that
comes from the client; some of that comes from our internal
experience. And we really have to weigh the fact that if we don’t
use Unity, or we don’t use some other familiar engine, there’s
a certain amount of cost with ramping up to that other system.
We’d either have to tack that on as a cost or take that as earning
more experience with this new system.

The Definition and Beginning of a Game Engine 37

In the Isetta Engine’s3 case, the team has a twin-stick shooter
game that they want to make, so that tells them which features
to include in the engine. They themselves are gonna have to
decide whether they have enough time to implement all of
those features and make it as close as possible to this first game.

This is not the way of things usually. In fact, I’d go so far as to say
most of the time, you already have some level of engine already
built, so it’s usually a little closer to taking a design proposal and
determining how to use our systems to make that. For example,
a game by EA (Madden, for instance), they typically just use the
features already existing in their engine while upgrading them.
If they need to move the franchise to a brand new platform,
then they would have to upgrade the engine for that.

Adding New Engine Features

Updating an existing engine is somewhat iterative. If we’re look-
ing at Madden specifically, the very basic rules are always going
to be the same, but there are always going to be features that
the team would like to add. Offhand, what I’m thinking is the
first iteration on the PlayStation 2. The team needed to render
players, and the players also had to be customizable enough to
be recognizable. Different sizes, widths, girths— lots of different
qualities. And the different players need to interact reasonably
well.

In the second iteration, the team considers a more advanced
problem. What if three or four players all collide into the cen-
ter? Initially, the implementation may require players to collide
in a sequence, like the first two, then the next two, etc. Is that
good enough? The team may decide that they want some ani-
mation-blended system4 where all of the players come into a
giant huddle to make the pile-ups even more realistic.

3. The Isetta Engine is a game engine developed by the editors of this book for
the sake of learning how to develop a game engine. See isetta.io for more infor-
mation.

4. An animation-blended system can be a graph of multiple animations and
transitions from an animation to another, i.e., an idle animation to a walk ani-
mation, and the blend system is how the animations are “mixed” together. It
extrapolates from the starting animation to the ending animation.

38 Behind the Black Box

Also, as you’re moving from Gen 1 PlayStation 4 to Gen N
PlayStation 4, there’s a lot of performance gains that can be
made. Maybe a core5 on the PlayStation 4 was hardly being
used before, so the team decides to make it the “audience core.”
Instead of little stick figures on flats, the audience is now full of
3D instanced people who are animated!

There are bigger leaps, too. For example, moving a system from
PlayStation 3 to PlayStation 4, or responding to years of stag-
nation and infrequent updates. Where that’s driven from is an
interesting question. Oftentimes, it’s both the engine guys want-
ing to do something cool that they couldn’t before and the
designers or scripters wanting to fix the weird things they’ve had
to deal with.

Iterative vs Waterfall for Engine Design

For the design and development of a project, it is better to have
an iterative approach to that of a waterfall schedule6. Start sim-
ple then layer in more features, with the caveat of removing or
adjusting particular sections when they don’t make sense. I rec-
ommend an iterative approach to projects, unless time becomes
an issue. Oftentimes, with shorter projects, prototypes turn into
the final product quicker than you’d expect, or at least large
chunks of code are copied regardless of the quality. Ideally, you
can do iteration, but practically it just may not happen.

Neglected Systems

From my perspective, usually graphics is the first thing people
are worrying about, and poor audio is always last. That tends to
be my experience in a development space of working with N
number of features. We’ll get to audio when we get to audio, but
the shiny and pretty stuff tends to come first.

Is anything neglected? I would say no. Even audio has a bunch

5. A core refers to a CPU in a multi-core processor; it is one of the processing
units in the single computing component that read and execute machine
instructions.

6. A waterfall schedule is a linear schedule where each subsequent item is depen-
dent on the previous components being completed. It is less iterative and flexi-
ble because the flow is usually mono-directional.

The Definition and Beginning of a Game Engine 39

of people that are very enthusiastic about the systems that they
care about, and even Unity is spending time creating brand
new— well, more likely importing new systems to make their
audio better. Usually, if it’s neglected from a Unity standpoint,
it means Unity is at least marginally aware of it and is probably
looking for a solution to integrate cleanly. Some of their newest
systems are mostly graphics, like the node-based shader sys-
tem7, the Scriptable Render Pipeline8, that sort of thing. They’re
going through a very radical shift over what you can and can’t
do with the graphics pipeline, which I’m personally excited
about.

Industry Standards for Engine Systems

There’s no huge standard for engine systems other than the
APIs that other systems are using. Usually, if you want to make
your own custom audio system, then you’re going to have to
spend a lot of time building up threads, make sure they play
through the systems appropriately, how they get loaded, and all
that. Or you can spend time learning the APIs for OpenAL9or
whatever it is, and then they kind of have a way they’re expected
to be used.

It’s kind of about what you expect to write yourself and what
you expect to use as an external library. DirectX10 and
OpenGL11 will have very specific calls that you’re basically

7. Node-based means the interface is visual with components, “boxes”, that are
connected to each other with outputs connected to inputs. A shader is a pro-
gram that alters the graphical look of an object. A node-based shader system
means the shaders are edited through nodes.

8. The Scriptable Render Pipeline is a system in Unity that allows the game
developer to configure and control the graphics and rendering process via
high-level scripting.

9. Open Audio Library, or OpenAL, is an audio library used for games, although
it contains the word open it actually isn’t open-sourced. Its open-source coun-
terpart is OpenALSoft.

10. Microsoft DirectX is a collection of application programming interfaces (APIs)
for handling tasks related to multimedia, especially game programming, on
Microsoft platforms, like Windows and Xbox. It is most known for Direct3D
which is the graphics API used for creating windows and rendering, and serves
similar purposes as OpenGL.

11. OpenGL, short for Open Graphics Library, is a cross-language, cross-platform
application programming interface (API) for rendering 2D and 3D vector
graphics. The API is typically used to interact with a graphics processing unit
(GPU), to achieve hardware-accelerated rendering. It’s the underlying render-
ing library for many modern game engines.

40 Behind the Black Box

required to do in a proper order or it’s just not gonna do what
you want it to do! It’s more about making sure your system flows
with the interface of the systems that you’re using externally.

It’s been a while since I’ve looked at those low-level APIs, and
(when I was in the position) I definitely didn’t want to write
most of it myself. While I wanted low-level access to OpenGL
or DirectX so I could do fancy graphics stuff, I was less worried
about physics or audio or whatever because I wouldn’t have to
rewrite or force it. Much like building most games, building a
comprehensive engine these days is teamwork. And oftentimes,
that’s finding a thing you’re interested in, and working on it ’til
it’s awesome. And that’s probably true for game development
as well. If you’ve got some guy that hates UI and you push him
onto UI, and you’re surprised when it doesn’t work out so well—
whose fault is that?

Adam’s Engine-Building Experience

At the time of building my first engine, I was in Panda3D12 and
Unity, and I wanted to know more about that rendering pipeline
and what was required. And so, the engine that I built was very
simple but very dedicated to, having a mesh, shader, and fancy
particles moving around just on the GPU with nothing else
knowing about it. It was a bit more focused rather than a gener-
alist system. But I also wasn’t expecting to actually make a game
with this without significant investment in it.

You can spend a lot of time building an engine and then building a
game, and then realizing as soon as you finish the game, it’s now five-
year-old technology. It may be cool, but it couldn’t keep up to date
with teams of programmers and artists and all these guys work-
ing together to build… for instance, in a horror game, where you
want very interesting graphical effects. If you make your own
engine, you’ve got very precise control over what’s being ren-
dered! Or, a team of people could have made the same thing in
Unity, for instance, and had it out the door years before you’re

12. Panda3D is a game engine, a framework for 3D rendering and game develop-
ment for Python and C++ programs. It was originally developed by Disney and
expanded by past ETC projects.

The Definition and Beginning of a Game Engine 41

finished with the engine. So it’s really a trade-off thing from a
professional point of view, and that’s why I chose to do a more
focused deep-dive of asking what I’d need if I was to get access
to the core render loop13 of Unity. And that’s kind of what my
stupid little engine explored.

Integrating Libraries into an Engine

Once you have a whiteboard plan, definitely set up a version
control system. In determining which libraries could be useful
it is better to consider the feature set your project needs to sup-
port. Obviously, if you’re not doing a lot of string manipulation,
don’t look for a library that does that. When using a library for
the first time, there is some time lost to setup and figuring how
to properly configure your IDE to work with the library.

A simple decision you may have early on is determining
whether you are supporting OpenGL or DirectX. Does being
close to open source matter to your project? This decision will
affect discussions with all libraries you maybe thinking of
including. Another benefit of open source libraries is you can
modify the code if you aren’t happy with how the library is
operating; you have control. Another factor to consider in
deciding on libraries is looking for a particular set of specifica-
tions/requirements for it to satisfy your project’s needs. If you
are going to have physics, you’ll probably want to use Nvidia’s
PhysX14 system to have all the computation on the GPU. The
audio will usually run on its own thread. I would lay out each
system the engine will include.

How Existing Engines Limit Game Development

The way I like to talk about Unity is it’s very good at making 95%
of the game, and that last 5% is going to be like pulling teeth. Per-
formance is an issue, though they’re getting better about that.

13. Core render loop is the loop where the rendering function is called. The way
the rendering occurs varies from engine to engine, but is usually performed at
the end of the main game loop.

14. NVIDIA PhysX is a proprietary real-time physics engine SDK created by
NVIDIA. It is used in most commercial game engines such as Unity, Unreal,
and Lumberyard.

42 Behind the Black Box

VR is currently kind of “hacked” into Unity, and it’s almost good
enough, and that’s where I think the scriptable render pipeline
is going to be good enough— or at least pretty good.

On the other hand, my understanding is that Unreal from an
engine perspective is very difficult to modify. It’s a huge code-
base at this point and recompiling that beast is an undertaking.
Unreal has a lot of good things going for it, including graphics
fidelity. You’ll hear the insult: “Oh, that looks like a Unity game.”
You don’t hear the same insult of “Oh, that looks like an Unreal
game,” because Unreal looks pretty awesome! If you need to do
tweaking to that, it then gets much more difficult to do. That’s
my understanding, though I have not used it in years.

The Relationships of Engines in the Industry

I think you’re starting to see a lot of cross-pollination between
Unreal and Unity and other systems. Unity was always very
good at making something quick— real quick— and making it
playable and fun. If they want it to look great, that means spend-
ing more time; that’s the last 5% sometimes. Whereas Unreal
tends to have all of those pretty features already active, and
as long as you know the gameplay scripting and the Blue-
prints15 and whatnot, you’re going to have a pretty good time.
If you need to constantly tweak what it’s doing, though, you’re
going to have a different kind of time.

The funny thing is we are looking into possibly taking at least
some of the rendering tech of Unreal and putting it into Unity.
Then people tell us, “this isn’t a Unity game, it looks like Unreal!”
And we’ll say, “yes, that’s exactly what we’re going for!” We’ll
see if that really pans out, though. There’s a couple interesting
rendering systems that they’ve got that the scriptable render
pipeline might make it very feasible to automate the process.
But, who knows, that’s future-seeing.

Interview conducted May 15, 2018.

15. Unreal’s Blueprint Visual Scripting System is the node-based scripting in the
Unreal Engine used for gameplay scripting.

The Definition and Beginning of a Game Engine 43

Growing Pains in Engine
Development

Aras Pranckevičius

AArras Pras Pranckevičiusanckevičius is a Lithuanian
programmer who has been working
on the Unity game engine since
2006. Before that, he worked on
some demoscene demos and small
games that you have never heard
about.

Experts Are Human Too

When I first started programming, I was mostly just toying
around with computer graphics. What made learning engine
programming difficult back then was that the Internet was still
in its infancy. Even Google didn’t exist yet. My school had lim-
ited resources as well, so my only real option was books, which
were all written in Russian at the time

The hardest thing for me to learn specifically was how to pro-
gram on a team. When other people are thrown into the mix, all
of a sudden everything changes. You no longer do everything by
yourself and you have to somehow collaborate. As a complete
introvert, communicating with people was one of the biggest

challenges I faced. Learning how to work in a team is a super-
valuable skill that the universities I’ve seen don’t talk about a lot,
or maybe not at all. As you work on your shared code base and
your engine ideas that you have, teamwork is extremely useful.
It is hard in some places, but at the end of the day there’s only
so much one programmer can do.

Also, in many of my blog posts, like my recent path tracer1 series
of blogs2, I write about topics where I still do not completely
understand them— even as a professional with roughly 15 years
of experience. People have told me that admitting I have no idea
what I’m doing is a refreshing thing to see, because there’s this
expectation that industry veterans understand everything. Since
we’re all human, that’s obviously not the case!

Dingus: An Engine to Forget

Back when I made things for the demoscene3, I worked on a
game engine called Dingus with a few others. I don’t think the
engine had any special architecture or technology; it was just a
bunch of code that we found useful. Back in around 2002 or
2003, the only engines to come with actual tools were Render-
Ware4 and Unreal Engine 2. Engines at the time didn’t come out
of the box with any decent tools. An engine was basically just
a bunch of code, and there was nothing in there for artists. So
our “engine” was just a bunch of C++ code that we used in our
demos, and the only tools we had were mesh exporters from
3ds Max5. These days, you just export any FBX6 or glTF7 file and

1. Path tracing is a realistic lighting algorithm that simulates light bouncing
around a scene. It uses the Monte Carlo method to give a faithful rendition of
the global illumination of the scene.

2. https://aras-p.info/blog/2018/03/28/Daily-Pathtracer-Part-0-Intro/
3. The demoscene is an international computer art subculture focused on pro-

ducing demos, which are self-contained, sometimes extremely small, audio-
visual computer programs.

4. RenderWare is a game engine by Criterion Software that launched in 1993 and
continued to regularly support games through 2010. It was known for provid-
ing an off-the-shelf solution to the difficulties of PS2 graphics programming.

5. Autodesk 3ds Max, formerly 3D Studio and 3D Studio Max, is a professional
3D computer graphics program for making 3D animations, models, games,
and images.

6. FBX is a proprietary file format owned by Autodesk that is mostly commonly
used for 3D model and animation data within the games industry.

7. GL Transmission Format (glTF) is a royalty-free file format for 3D scenes and
models using the JSON standard.

Growing Pains in Engine Development 45

there are ready-to-make libraries to read that, which was not the
case back then.

To be fair, I don’t think I had any particularly clever insights
when writing Dingus that would help me in the future. What it
helped me with in my career, though, is that it was the main rea-
son why I got hired at Unity! The Unity founders told me the
reason why I got hired was because I was writing some some
messages to a mailing list about physics engines. In particu-
lar, it was about a physics engine called the Open Dynamics
Engine8, which Unity used before it moved on to PhysX. The
Unity founders were reading this mailing list, and they saw my
messages. I guess they thought I was not I was not totally stupid,
because I ended up getting the job! It also helped immensely
that I had my own website with a blog and tech demos. That
said, I don’t think the actual C++ code I was writing for Dingus
back then was useful in the end. If you are looking to get hired today
as an engine programmer, I think making content like blog posts and
videos about your work will be more useful than your actual code.

Reflecting on Windows Unity Editor and Graphics
Abstraction

Although we had to shuffle a lot of code around to make the
Unity editor for Windows, there weren’t many decisions that I
made that I regret. Unity started as Mac-only software in 2004
or 2005. Back then, actually, Macs were not the hip thing they’ve
become in the last 10 years; this was before iPhone existed. At
the time, almost nobody had a Mac. Despite this, for some rea-
son, Unity started on a Mac and remained that way for a long
time. When the team realized the majority of game developers
are not on Mac, we knew we needed to make a Windows ver-
sion. This was a huge undertaking because Unity’s editor tools
were written with a lot of Mac-only assumptions. It was essen-
tially Cocoa9 for the UI and the various UNIX10 assumptions

8. Open Dynamics Engine (ODE), is a free and open source physics engine writ-
ten in C/C++ that can do both rigid body dynamics simulation and collision
detection.

9. Cocoa is Apple’s native object-oriented API for macOS.
10. UNIX is a family of multitasking, multiuser operating systems that derive from

the original AT&T Unix, originally developed at Ken Thompson, Dennis

46 Behind the Black Box

about files. The most painful aspect of porting to Windows was
the asset pipeline in particular. On a Mac, for example, there’s
no such thing as an application having exclusive access to a file.
If some process is reading a file, you can virtually delete it, and
then when that process goes away, the file actually gets deleted.
On Windows, if a file is being used, another process cannot just
go and delete it. Stuff like that was probably the most annoy-
ing to get through, as well as the differences between how Cocoa
and Windows UI.

There were definitely some decisions I made back then that
I regret. Since Unity started on a Mac, the engine had been
OpenGL11 only. Neither Metal12 nor any other alternatives
existed at the time, so OpenGL was our only option. From there,
we started to add Direct3D13 9 (DX9) support, and so we made a
little abstraction layer for the graphics API. Since we were doing
this in around 2006, shaders already existed but more complex
elements— like the concept of compute shaders14— didn’t exist
at all. Our abstraction layer for the graphics looked like a very
DX9-style API, which we later modified when adding Direct3D
11 (DX11) and PlayStation 3 compatibility. It stayed in this sort of
legacy DX9/DX11-style API for a very long time because didn’t
do enough internal refactoring. Right now, a bunch of people
at Unity are doing that, but, for example, getting DX12 working
with this DX11-style abstraction was very painful.

There probably isn’t a good way to abstract out a single system.
You don’t know what or how to abstract until you have two dif-
ferent ways that you need to do some particular systems. Or,

Ritchie, and others at Bell Labs. Its main comparable is Microsoft’s DOS, which
is mono-task and mono-user.

11. OpenGL, short for Open Graphics Library, a cross-language, cross-platform
application programming interface (API) for rendering 2D and 3D vector
graphics. The API is typically used to interact with a graphics processing unit
(GPU), to achieve hardware-accelerated rendering. It’s the underlying render-
ing library for many modern game engines.

12. Metal is a low-level, low-overhead hardware-accelerated 3D graphic and com-
pute shader API developed by Apple and debuted in iOS 8. It combines func-
tions similar to OpenGL and OpenCL under one API.

13. Direct3D is a graphics API within Microsoft DirectX used for creating windows
and rendering, and serves similar purposes as OpenGL.

14. A compute shader is a shader stage in the graphics rendering pipeline that is
used entirely for computing arbitrary information. It is typically used for tasks
unrelated to rendering.

Growing Pains in Engine Development 47

in terms of graphics, until you get two or three graphics API’s
that you need to abstract. For example, our abstraction for DX9
at the time was okay, but we neglected to keep modernizing.
Currently we are doing that, but we were several years too late
that made catching up a very painful process. Modifying engine
architecture on software as big as Unity is painful. Some aspects
of it are insanely hard to change. I saw a tweet many months ago
that said:

Library design is this: You have made a mistake. It is too late to
fix it. There is production code depending on the mistake working
exactly the way the mistake works. You will never be able to fix it.
You will never be able to fix anything. You wrote this code nine sec-
onds ago.

It’s not exactly true that you will never be able to change it,
but some of the decisions that we made in the engine are near-
impossible to change without adding a parallel system that, for
some amount of time, lives right next to the old one, that it has
to replace. Hopefully the new system is better than the old one
and people move toward the new one, and then maybe, eventu-
ally, you can remove the old one.

As we speak, I think some of the components in Unity that are
used for the in-game UI system are from three UI-system gen-
erations in the past. Right now, we have in-game UI, and then
before that we had something like IMGUI-based15 in-game UI,
and before that there was the GUI text component from Unity
1.0. I think we are removing those right now, so it only took about
12 years!

API Responsibility

How much the API protects the developer depends on who your
target audience is. At Unity, we have exactly this problem; a
large percentage of Unity users are not very experienced devel-
opers, so they need something that’s easy and robust. At the
same time, we want to have content that pushes the limits of

15. IMGUI stands for immediate mode GUI which is a code-driven GUI system
where on each rendering frame the application needs to issue the draw com-
mands of the GUI (the GUI is not stored for multiple frames)

48 Behind the Black Box

hardware to serve people who actually know what they’re doing.
For the experienced programmers, the API and the system
shouldn’t get in their way.

Admittedly, we are not always great at this. The best approach
I’ve seen overall is where you have two levels of API’s. One
would be a low-level API that is super efficient, super explicit,
and doesn’t protect you from anything. An example of this
would be Vulkan16, or DX12, both of which you have to be an
expert to use. In addition to the low-level API, you should have
another API that’s easy to use, even if it’s not 100% efficient. For
the other six billion of us, it gets the job done. We’re trying to
bring this low-level API and high-level API split into our sys-
tems at Unity, but we’re not quite there yet. If you’re making
your first engine as a learning project, you don’t need to worry
about this, but it could be valuable for your next engine.

There are some ways to handle adding new features to an
engine without breaking production code, one of which is hav-
ing a package manager17. We just shipped the Unity with pack-
age support a year ago, so not everyone in the Unity ecosystem
has moved to that yet. We’ll see how that goes.

Conceptually, package management is different from engine
versioning in that you could upgrade parts of the engine that
you care about. For example, if there’s a new feature in the
physics system that you really really want, but you want to stay
on the current rendering engine, you could just upgrade the
physics system. In a perfect world, physics would be a separate
package without dependencies to anything and you could just
mix and match. In that case, you could upgrade physics and
keep everything else the same— whether that will actually work
in practice, we’ll see. Right now, there’s a whole bunch of the
Unity engine that is not put into packages yet. To some extent,
we want to get everything packaged.

Getting modules to talk to each other, however, is not a trivial

16. Vulkan is a low-overhead, cross-platform 3D graphics and compute API that
targets high-performance real-time 3D graphics, such as video games.

17. A package manager is a system which handles the installing, updating, config-
uring, and removing of a collection of software libraries.

Growing Pains in Engine Development 49

problem. I think the only way to design interfaces that’s actually
stood the test of time was not to design them in terms of func-
tion calls or classes, but to design them in terms of data formats.
If you get a TGA image file, which has been around for 30
years in its simplest form, it’s just specifications of how the
data is layered. And then, you basically don’t care how the TGA
writer/reader is implemented. I think one way of making sys-
tems communicate is to define the data protocol between them.
They could communicate through a shared memory space or a
socket18, and then you don’t care whether the class changes that
is writing the data or if they’re even the same language.

However, there’s a bunch of current functionality that we don’t
plan to package. That’s especially true for the systems that we
are about to replace. For example, we made the Scriptable Ren-
der Pipeline (SRP), where users can write their own graphics
pipeline in a high-level C# API. We don’t intend to put our
legacy pipelines into separate packages anytime soon, because
we expect that people will move on to the new pipelines anyway.

Our approach with the SRP was to make the actual API where
you express your rendering pipeline high-level enough that you
never operate on a single object. Instead, you operate on sets
of objects. For example, there could be an API call that does
culling. It doesn’t return a list of visible objects; it returns some
handle to the whole set of visible objects that you can only do
partial queries on. With that, you could search for everything
that’s visible or everything that’s opaque, but you don’t have to
iterate over each object and do decisions on each of those. Con-
ceptually, the API works on sets of objects, sets of lights, etc.

We also weren’t exactly making a switch to a less efficient or
tightly-pathed system. As our previous non-malleable render-
ing pipeline grew over ten or twelve years, it gained so many
hidden decisions and branches to handle various feature inter-
actions that it was no longer super tight and efficient. It was now
being used to handle various corner cases that only happen in
rare cases.

18. A socket is an internal endpoint for sending or receiving data within a node on
a computer network.

50 Behind the Black Box

From Graphics to Plumbing

Recently in my career at Unity, I changed roles to be a dev tools
engineer. Switching from graphics to build tools didn’t impact
my perception of game development very much, and I think
that’s because I was already dabbling in non-graphics work dur-
ing Unity’s early days. Even during my time in graphics, once in
a while I would be doing something else, so I already had a good
overview of various systems outside of graphics.

What I didn’t fully understand was the differences in machine
configurations when people build code. You would expect
everyone who uses Windows gets the Windows version of soft-
ware. It turns out, though, there are about ten people who are
on Windows but run everything from a Cygwin19 shell, and the
Cygwin shell pretends it’s Linux. Some people check out their
source code into a folder that is over 100 characters long, and
Windows, to this day, still has a maximum path length of 260
characters. Someone else might have a Windows that’s local-
ized in French, so all their error messages are in French, which
means your tools cannot parse the error messages and expect
something understandable. Conceptually you might under-
stand these various exceptions, but you don’t realize how much
of a hassle all that is until you have to deal with that. My advice
would be to get your team onto a setup that is as uniform as pos-
sible. Not having to worry about tech differences makes things
so much easier.

I watched part of the Isetta team’s talk with Casey Muratori,
and in one part he brought up the question of who “build engi-
neers” are. Actually, that’s what I am! I guess Casey comes from
a different setup, because at Unity we have five hundred engi-
neers writing code on the same codebase. Now, you could argue
whether that’s a good thing or a bad thing, or whether you
should have five hundred engineers in the first place. With that
many engineers at work, I think having at least two or three
build engineers actually helps; whatever you can do to make

19. Cygwin is a Unix-like environment and command-line interface for Microsoft
Windows. It provides native integration of Windows-based applications and
resources with those of a Unix-like environment.

Growing Pains in Engine Development 51

your programmers’ lives more productive or less annoying is a
useful thing.

Part of that work has been profiling our code, which can be very
useful. However, if you add profiling capture that no one will
ever look or do something about it, it’s kind of pointless, right?
What I have noticed, and especially in the in the build area,
is that you have to make profile information really visible. For
example, right now in Unity’s build system, what we do is that
as each C++ file is being compiled, it prints the time it took right
to next to the file name. The numbers are nicely aligned, too, so
that if it takes two digits of seconds, it’s easy to spot. Just adding
that was a super easy thing to do, and that makes people who
wouldn’t ordinarily pay attention to build times take notice and
address the problems they find.

Modularity is the Future, Maybe?

I don’t know what the future holds for game engines. Looking
back to when we were just getting started with Unity, I remem-
ber some people thought it was a stupid idea because nothing
we could make would be able to compete with Unreal. That is
still true to an extent in the AAA game space, where aside from
in-house engines, Unreal Engine 4 is the strongest option today.
Knowing this, we tried for a long time not to compete with
Unreal Engine; we positioned ourselves as an indie web/mobile
engine (for better or worse). I think if we were to compete with
Unreal from Day 1, we wouldn’t have survived as a company.

That said, I see the future of game engines being more modular.
That’s what we are currently trying to do with Unity itself in
terms of packages and modules, but the risk is going overboard
with modularity. For everything that’s good about JavaScript
npm20, they sometimes go too crazy; they have a single line of
code becoming its own module. As Unity and Unreal are cur-
rently these big, monolithic pieces of tools and functionality,
they aren’t inherently versatile enough for different game gen-
res. While they both have some malleability, you still have to

20. npm is a package manager for the JavaScript programming language. It’s the
default package manager for the JavaScript runtime environment Node.js.

52 Behind the Black Box

deal with gigabytes of extra stuff. I think something more mod-
ular will happen in the future–I can hope that will be Unity, but
we’ll see.

Interview conducted on October 8, 2018.

Growing Pains in Engine Development 53

Wisdom from Working at AAA
Studios for 15 Years

Elan Ruskin

EElan Rlan Ruskinuskin is a senior engine pro-
grammer at Insomniac Games, where
he has worked on critically-
acclaimed titles including Marvel’s
Spider-Man and Ratchet & Clank.
Prior to his time at Insomniac, Elan
worked at Valve, Naughty Dog, and
Maxis on many of their flagship titles
as a gameplay and engine program-
mer. When he’s not programming,
Elan enjoys theater, music, and Star
Trek.

Designer-Driven Tools

The real advantage of data-driven systems is that it’s designer-
driven; you’re decreasing the iteration time for the designers.
It puts the ability to make and see changes into the hands of
the person actually making the content, and away from the
programmer-compiler loop which requires programmers to
develop and compile before any change can take place. The
problems with data-driven design are 1) the code has to be a lit-
tle more complex to support this flexibility and 2) you’re load-
ing bulkier content. You can get around that, though, if you use

a builder1 to pack down the content into something that code
can load more efficiently.

What surprised me about data-driven systems is that it ended
up being much less of a problem than I expected. It turns out
that you load things relatively infrequently, and if you do end
up loading them frequently, you can bake them down. So as
much as it would make the me of 20 years ago sad to hear me
say it, having things in an open-text format that gets parsed
turns out just not to be a performance issue. I’m not saying per-
formance doesn’t matter! But that turned out to not be the issue.

The other problem with data-driven design is that people will
do weird, unexpected, and strange things with data that you
didn’t anticipate and will possibly break your systems. That’s
because the connection between changing the data and some-
thing in the game breaking is not quite as obvious as it is with
code, where you can set a breakpoint and see exactly what hap-
pened. The importance of good error reporting, diagnostics,
and designing the authoring tools in a way that prevents people
from getting themselves into trouble was not clear to me when
I began engine programming.

With tools, the things that you can’t anticipate are usually the
problem, because the designers and artists are always trying to
solve their own problems. They’re not out to break the tools or
fumble around oafishly; they have specific needs, like “I need
this tree to have another tree on top of it so I can turn one of
them off and the other one on, because it’s winter and we need
the leaves to be gone.” In this scenario, they might not know
that if you have two things in the same place at the same time,
it causes a problem. That’s something they would have no way
to know about until they did it. So really, the way to deal with
that is to find a way to prevent people from making the mistake,
which would then make the causal connection obvious. Ideally,
we should make it impossible to do bad things, but again, that

1. A builder is a tool used to process assets from their editable forms (files
editable by external software) into a more compact, unreadable file to be used
by the engine for a game. The file format is typically proprietary and specific to
the engine, and engine metadata is stored within the file.

Wisdom from Working at AAA Studios for 15 Years 55

comes back to anticipating things. It’s also not a reliable strategy
to just go over and yell at people for having done the content
wrong or give them a gigantic document that explains how to
use your tools. You can’t expect people to hold that much con-
tent in their heads at once.

When developing tools for writers, an assumption a lot of peo-
ple make is that writers are not technical and therefore need
easier tools, which is completely untrue. Writers can learn com-
puters as well as anyone else! What I learned from my time at
Valve is writers need flexibility; any given line of dialogue goes
through many iterations to get it right.

The thing to be cognizant of is that writers are part of a whole
pipeline of content that has to get made. The writer’s text
appears in the game while it’s still being prototyped, but even at
that time we have to cast the voice actor and record them. Then,
we put the voiced lines into the game only to realize the dia-
logue is clunky. So we have to change the line, go back to the
booth, and repeat the process. This puts the writers in the mid-
dle of a pipeline that has audio waggling at the other end. The
advantage of building a complete suite of tools is you can inte-
grate the whole process of tracking where lines of dialogue are
located in the game, as well as who’s been cast to play it, and
whether or not it’s been recorded and localized yet. In Campo
Santo’s talk on Firewatch, they discussed how they integrated the
dialogue system with the “recording-tracking” system. Taking
that approach saved them a lot of agita.

Intimate Bond of Engine and Tools

At Insomniac, the engine team and the tools team are the same
team. That works well for us because the team is not especially
big, and because the engine and the tools are intimately bound.
The engine is loading the assets, the builders are cooking the
assets into a binary2, and the tools are feeding the things to
the builders. These are not separate operations; it’s all the same

2. Binary files are files stored in binary format, a format that is easily computer-
readable but not really human readable. These are more compact in size than
human readable files.

56 Behind the Black Box

lump of data. As teams grow, you’ll need to specialize the labor
because they are different skills to an extent. I personally don’t
think there’s that much value in separating the engine runtime
from the tools in terms of being different teams, unless your
studio is gigantic. In that case, you have to for organizational
purposes.

Along the same lines, it’s almost a necessity to version the tools
and the engines together. Part of this is the obvious reason that
if you change the runtime format and the tools need to export
in your format, the engine needs to be able to read it. Again,
they’re operating on the same data. What’s more, anytime you
need a new capability the engine, the tools have to support it, so
they really move in lockstep.

One of our attempts at improving our tools ecosystem was to
use web tools. For the entire rundown of why Insomniac went
with web tools and why we stopped using them, you should
see Andreas Frederiksson’s GDC talk. The reason for moving
towards web tools was that we thought it would be much more
flexible to make a UI in the web, and also that it would be easier
to hire people who have a web UI experience than people who
have C++ UI experience.

That just turned out not to be the case. We ended up hiring
the people that we would hire anyway, and then teaching them
JavaScript. What’s more, the scaling issues of web tools are enor-
mous. The web is good at doing 100 or 200 of something; it’s
not so good at doing 30,000 of something. So just performance
and memory were gigantic issues, in addition to all the other
issues like Chrome continually breaking underneath their feeds,
JavaScript is just bad!

On the usability side, we made our new web tools work almost
exactly like the old tools, only with less bugs. We tried to keep
the interface consistent. The problems that we ran into were
that the new tools didn’t have all of the features of the old tools
to begin with, because we couldn’t rebuild everything at once all
in one piece. As a result, the team would have to learn how to
work around the missing pieces. Because we kept the the work-

Wisdom from Working at AAA Studios for 15 Years 57

flow the same, it was fine, plus everything got faster and less
buggy.

We have also made several attempts at making a tool to track
feature regression. We wrote a tool that loads every level of the
game, takes a snapshot of the memory, and then unloads it and
repeats the process. From there it would just create this whole
spreadsheet report that nobody ever looked at, because it was
always days out of date. We had another tool that was meant
to interrogate a level; it would look at all of its dependencies
and the dependencies’ dependencies, and recursively try to see
how much memory everything would consume. The problem
of that is it’s an estimate, because you often don’t know how
much runtime memory something is going to consume until
you’ve loaded it due to dependencies. People will write code
that causes dependent allocations that aren’t even in the asset.
But trying to detect memory consumption outside of runtime
is a bad approach. If you’re building an engine now, try really,
really hard so you can look at an asset on-disk and know how
much memory it’s going to take up. Doing that saves you so
much agitation. Failing that, write a regression tester, go into the
level, and see the footprints. Keeping regression testing work-
ing— keeping the whole machinery of it working— is a full-
time job. At least in a AAA-size team, somebody has to keep that
pipeline going. We just didn’t have the manpower to maintain
that machinery, and that’s why it fell down.

Allocate, Allocate, Reallocate

Memory allocation is always a problem. I don’t just mean that
the actual use of memory is a problem— the whole apparatus
for allocating memory is only becoming more difficult as costs
get bigger and we have more memory to allocate. A few compa-
nies that have had fixed memory pools3 have gone back to using
dynamic memory pools4, just because of how much stuff was
coming in and out of memory. It was a nightmare to fix it all.

3. Fixed memory pools is a data structure for dynamic allocation of fixed block-
size memory chunks.

4. Dynamic memory pools are pools in which memory sizes are determined
during runtime, and are changing per allocation rather than being fixed for all.

58 Behind the Black Box

I think people are trying to find a way to get back to more sta-
tic allocations5, or at least block allocations fixed in size. When
I say that, I mean the size of the individual allocations being
fixed as opposed to the whole pool being fixed ahead of time.
It’s just hard, and that’s why no one is doing it. Maybe some-
one much smarter than me is doing it! At Insomniac, the way we
handle memory allocation is we have one allocator6 for assets,
a different allocator for render memory texture and graphics, a
different one for physics, and one more for gameplay compo-
nents. Each pool has different characteristics, because we’re try-
ing to allocate things of different size with different lifetimes.
We have different pool allocators for different purposes. Insom-
niac’s allocators are actually not pooled, because the assets are
all different sizes. That said, we do use pooled allocators for stuff
like physical objects; for example, pedestrians in Spider-Man are
coming out of the pool. So in that situation, they are used for
things that are all of the same type.

Balancing memory usage is an ongoing, iterative process. As
you’re making your level and you realize you need a few more
textures over here, you may have to take some geometric com-
plexity out somewhere else. You might need to put in some
more actors, so the textures have to go. It’s this continual give-
and-take of budgeting. The upshot is that you really need good
budget reporting, even more so than being able to decide what
your budget is ahead of time. When people put in content, they
need to know the weight of the content and they need to know
the “pie chart” of where all the memory is going. Otherwise, you
have no way to make trade-offs.

Effectively Using Profiling

The ability to sum together scopes across an entire frame is
important. That’s because you can have a profile scope that says
how long to tick this asset’s physics component, so if you’re

5. Static allocations is the allocation of memory at compile time, therefore faster
than dynamic because the computer doesn't need to switch into kernel mode
to grab more memory.

6. An allocator is a data structure that encapsulates memory management and
doles out memory on request. There are different types of allocators based on
the needs (amount and lifetime) of the memory.

Wisdom from Working at AAA Studios for 15 Years 59

doing a hierarchy then it’s gonna appear a thousand times. It’s
helpful to aggregate that whole thing together and be able to
plot the aggregated number. A convenient way of exporting a
report from a run of the game is as a spreadsheet that you
can then import into Excel. Because then, when I’m making a
change, I can run the game before the change and then after
the change as control and experimental groups. I can also do
a Student T-test7 between them; doing statistics becomes more
important. Otherwise when you make a change, you don’t know
if you actually fixed anything. Also, presenting the data from the
the profiling part of the profiler is not that hard; it’s presenting
the data to the people who can act on it that’s hard.

For a discussion of how I tracked crashes, go see my GDC talk
on Forensic Debugging, where I babble about this concept for
about an hour. The short of it is, you start with the call stack, and
from there you can just start pulling the thread backwards. Most
crashes are due to bad data, so anything you can do to validate
the data as it’s coming in— before it blows you up— will save
you an enormous amount of effort down the line.

Concerning general performance, there’s one common mistake
that I need to bring up. People who use the function `tolower`:
Stop it. Just stop it! I’ve been seeing this used to compare case-
insensitive strings a lot, but there is absolutely no need to con-
vert uppercase character to lowercase ones. If you’ve got a string
in your engine, just turn it into a hash to start with. I saw an
online multiplayer game spend seven percent of its time just
turning uppercase characters into lowercase ones; think about
how much money it costs to run that on a dedicated server! It’s
madness!

Synchronization of Time

Clocks and timers are inherent to video games. For example,
look at the update loop and how many frames the game renders
every second. Whether to synchronize the multitude of clocks

7. The Student T-Test is a statistic test to determine whether a sample set passes
hypothesis, the chance the samples are the same or different. For more infor-
mation see Elan's GDC talk.

60 Behind the Black Box

in the engine warrants depends on the game. Albert Einstein
conclusively demonstrated that it is impossible for observers
and different reference frames to agree on a common clock.
Valve uses a multiplicity of clocks, and essentially when you’re
making a networked game you always have to. That’s because
you’ve got your client’s clock, the other client’s clock, and you
get the server clock. Occasionally you want to decouple the sim-
ulation from the animation, so you’ll also have the animation
clock, which takes faster or ticks less constantly. All of these
clocks are working at different rates.

I don’t have a good and complete answer for time synchroniza-
tion because it depends on the kind of game that you’re mak-
ing, it depends on the way that your animation system works,
and it depends on your circumstances. For a game like Spider-
Man, we actually had to have— for gameplay purposes— mul-
tiple clocks, because in a superhero game time slows down and
speeds up in dramatic moments. If Spidey smashes through the
ceiling, we want to put things in slow-motion, or pause the game
when bringing up the weapon wheel. Stuff like that changes how
you approach clocks.

Engines Can Change, Little by Little

Adding streaming late in the Insomniac engine is a funny story.
Insomniac had made an engine for Resistance, and that was used
later on for Fuse. When we designed the engine, we went into
it with the mentality that our games were primarily in linear
indoor environments. As such, we decided the only thing the
engine wouldn’t support would be open world streaming8. So
of course, we immediately landed the contract for Sunset Over-
drive9! The point that I would learn from this is that even if you
think you haven’t designed for something from the ground up,
you can get there; you just get there a little bit at a time. The

8. Open world streaming refers to the the process of "streaming" (loading) the
world/map (sections of the world) into memory while the player moves
throughout the world. While the player moves the game decides which section
of the map should be loaded into memory, the engine needs to manage mem-
ory and framerate during these times of loading.

9. SSunset Overunset Overdridriveve is a game developed by Insomniac Games for the Xbox One. It
is a fast-paced, open world action-adventure, third-person shooter.

Wisdom from Working at AAA Studios for 15 Years 61

whole open world mechanism in Sunset Overdrive came from
the fact that we had airlocks10 in Fuse to control progress. So
essentially, we just said “Well, what if we have airlocks in nine
directions but don’t actually have airlocks?” Then you just use
that same mechanism a piece at a time.

It’s often not necessary to go back and rebuild something from
the beginning. There’s always a step you can take in the right
direction. The downside is you end up flooded with technical
debt when you do that, but you also end up not having to start
over.

Keeping the Team in Sync

When you’re working on larger engine teams and want to publi-
cize bugs, there’s bug tracking software you can use. Either JIRA
or DevTrack are good options; this is a well-solved problem
in tech. On the other hand, publicizing features and changes
remains a huge issue. The bigger your team gets, the more of a
problem that is. Simply saying “we need to communicate bet-
ter” is a gesture, not an answer.

We do the following things at Insomniac; some of them work
and some of them don’t. When we make a big usability change
and we write a new tool, we will do the presentation on that tool
to the people who need to use it. That is somewhat useful in that
it’s a training scenario, but it tends to go in one ear and out the
other. There are also people who you don’t realize rely on that
tool who won’t be part of the discussion. We also write up doc-
umentation, but hardly anyone reads it. One helpful thing we
do occasionally is record video walkthroughs of how to use the
tool. The problem of the video is that it’s slow and annoying to
watch, but the advantage is that you can follow along with while
you’re doing it. Think of it like you’re cooking and following a
recipe.

10. An airlock in games refer to an area in which loading of the next chunk/section
of the map is being performed. Within this zone the next and previous sections
can both be in memory, or with limited memory only the next is being loaded
into memory. In the first case the player can enter both the previous and next
zones (once loading completes), however in the latter the player can neither
advance or backtrack their game's progress while the loading happens.

62 Behind the Black Box

As for communicating inside the team, Insomniac has a team of
about 25 people, so it’s a little bit easier. Our former core team
director Mike Acton had us do something to get us in the right
mindset for every weekly department meeting; someone on the
team would do a changelist review. They would look through
the change history and comment on interesting changes on a
changelist of another member on the team. The reason that we
do this is so that people get in the habit of looking at the change
lists that are going into the repository.

My advice about having those domain experts came from an
era where people were going from PC development to console
development more than they are now, and that knowledge
hadn’t really percolated out. You had studios that had really
good PC engines and workflows who were just new to consoles.
It is ideal if everybody in the team knows how to get a console
devkit11 set up and working, but it’s also not realistic because
it’s such specific knowledge. In theory, you could write docu-
mentation and tutorials and workflows, and that’s helpful as far
as they go. However, people are always going to have questions
that are not answered by the tutorials. As such, it still helps to
have somebody who is an expert in the topic. That doesn’t need
to be their whole job; it just needs to be the person who’s really
good at doing that thing.

Onboarding engineers is a really hard problem no matter where
you are. This is actually where some of the advantage of having
a domain expert on how to use the devkit comes from, because
then you can ask the person for lessons. At Insomniac, we try
to address this by assigning a new person to fix something that’s
broken in an obvious and easily fixed way. By starting with that
sort of problem, you start to pull on the thread of all the pieces
that you need to work at the company. The bigger your com-
pany is, the more training you can afford.

11. A game development kit (devkit) is hardware different from the commercially
available version of the hardware, specialized for development. It will have a
way of booting with a development version of the game, and modern devel-
oper kits have debugging features for the developers.

Wisdom from Working at AAA Studios for 15 Years 63

With Great Power Comes Great Responsibility

Technology is always changing. The amount of power available
to consoles and PCs has grown precipitously. PC’s seem to have
blown up recently, but consoles just keep getting more and
more CPU power and memory. People underestimate the
importance of RAM because they’ve been told it affects the
amount of art you can get on the screen. Obviously, mobile is
a big change— mobile and tablet games are going to be more
and more significant over time. AAA isn’t so much in that space
yet, but a lot of other people are. In terms of revenue, mobile is
a huge chunk of the market now, and of course the ubiquitous
availability of networking has totally revolutionized the indus-
try. That’s because you can always count on the network being
filled with people at any given time. This not only applies for
multiplayer games, but also for downloadable content, achieve-
ments, and all the other good stuff that comes with being con-
nected.

Engines are going to face a few challenges ahead. One is that
consoles are getting bigger and have more memory, and teams
are getting bigger as well. That’s a deal; the tools have to cope
with it and the engine has to deal with loading more hetero-
geneous assets at once. Mobile, obviously, is gonna be a bigger
and bigger thing. The tricky thing with mobile is that tablets
are actually catching up now in terms of computing power, but
they’re not catching up in terms of electrical power. Electric-
ity conservation has become a surprising concern, as well as the
different UI that you have with tablets. I think people will start to
rely on networks more and more, but I think actually the pen-
etration of networking is pretty slow. This is especially true in
large countries like the United States, so it will be a while before
people are building stuff around the cloud. The age of cloud
rendering is not here yet. VR could be a big deal, or it could
not— the jury is still out for that.

Interview conducted November 3, 2018.

64 Behind the Black Box

Going Beyond the Books
Shanee Nishry

SShanee Nhanee Nishryishry is a Google engineer
by day, game developer by night and
a fencer in-between. When she isn’t
working on official Google Daydream
VR and AR projects, she is enthusias-
tically developing her real-time
strategy game using her own game
engine!

Programming Origins

My school background is kind of boring. Other than high
school, I’m self-taught, so I have no degree or any formal studies
in the field. I started a Biotechnology degree, but I didn’t finish it
because I got into a game studio in the meantime. Maybe when
I was about 18 or 19, while I was in my Chemistry and Biotech-
nology courses, I started studying C++ and I wanted to make a
video game. I started teaching myself DirectX, so I used a bunch
of books like Programming Role Playing Games with DirectX by Jim
Adams and Game Coding Complete by Mike McShaffry. Both are
really awesome books that I’d definitely recommend. I started
making my first engine by following these books because I knew
absolutely nothing, but these two were brilliant and gave really
good example code. By the end of following them, I went from

having no idea what I was doing to kind of having an idea what
I was doing!

Because I started programming game engines quite a while ago,
I can’t think of what was specifically the most confusing aspect.
Truth be told, back then I literally knew nothing about game
engine programming; I didn’t even know how to code properly!
I remember one of the first books that I used for C++ was called
Beginning C++ Through Game Programming. I just followed the
books and adapted its code to do what I needed, so the process
was pretty simple.

Keeping it Minimal, Decoupled & Data-Oriented

There are a few things that have changed since I started in
the games industry. One new paradigm that is very common
in the industry right now is data-oriented design. Before that
was introduced, everything was classes and hierarchies. Another
recent question is “how do you make the systems in your game
interact with one another?” So if you have input and you have
your graphics and animations, you have to figure out how they
will interact in a meaningful way. You also have to determine
what gets access to the data. There are so many different par-
adigms to handle those questions. Some people will tell you
to send an event whenever your position is changed, but then
when you do that and learn about data-oriented design, you fig-
ure out everything is going in your cache and sending an event
for every entity. It’s just a mess.

When working on Super Sam Adventures, we had to figure out
how to access the transformation for an entity from different
systems. We were originally using a map to access entities and
then get the component out of them, and we noticed that on
Android and iOS at the time, that map was so expensive because
every lookup resulted in cache misses and we were doing too
many lookups in the map. It just ruined the frame rate, so we
had to change that.

All of these questions about access, interaction between systems,
and what a system actually needs to do were probably my

66 Behind the Black Box

biggest questions after I had a little bit of experience in game
development. When you know nothing, you just follow some book or
tutorial, and it all makes sense because you’re doing what the book is
telling you to do. When you start doing your own thing, though, things
don’t work as naturally. So maybe the biggest question I’ve had
since then, and in some ways I (and other people I know) am
still trying to answer it today, is about the interaction between
systems; what is the responsibility of a system and how much
should it be engineered?

I feel like the general consensus these days — and it might
change a few years from now — is that a system should be as
small as it can be and do the minimum that it should do. The
interaction between systems is a very dependent subject, but my
preference is that it be as direct and as minimal as possible. By
minimal I mean getting all the data that you’d need in one func-
tion, if possible. So for example, if I have a transformation sys-
tem and a rendering system then my render system needs to get
the transformation for its entities from the transformation sys-
tem. Instead of doing it for every entity each time, if you can
just make a synchronization point in your engine that says “now
I’m going to transfer all the data for the render system”, then
that’s probably better. Having specific synchronization points
like that allows you to heavily specialize or multi-thread your
systems.

At the same time, I’m recruiting all of my threads to just fill up
these few arrays of transformations, which will then be filled in
the layout that the render system wants them to be. The ren-
der system then just takes the data and does whatever it does,
and the rest of the engine is free to do whatever. That way, if
you have any kind of multi-threading but you only have the
synchronization points, there’s no risk of a collision between
threads because all of your data has been copied at a very spe-
cific point in time. That’s the main idea: Make the systems as
small as you can and interact as direct (but as little) as you can.
One problem that you could find from this is having different
implementations of an API and dealing with changes to that
API, but it’s a different problem which you might be able to
avoid entirely.

Going Beyond the Books 67

Developing for an iOS Engine

The Super Sam team was very iOS focused. I felt like I was
the only Android person in the group. Most of the people did
not put considerations into cross-platform development, but I
did and I feel like it paid off, because the game was eventually
ported to Android and didn’t take too much work. At the end
of the day, I feel like as long as you keep the very specific inter-
action with a platform abstracted from the rest of the engine,
then it shouldn’t take too long to port it to a similar platform. I
think that the most difficulty comes when you have a PC game
and then you want to port it to mobile or console, because that
brings two big issues to the table. One of them is the perfor-
mance and the memory requirements that are often different,
and the other problem is just the input — moving from key-
board to controller or from touch input to keyboard and mouse.

One of the special considerations we had to have when devel-
oping for mobile was binary size1. And that’s partially why we
developed our own physics system. We didn’t want to link with
big external libraries because we wanted to keep the binary and
final app size extremely low, and people simply didn’t install
heavy games. The expectation is that a person would install a
game using mobile network which could be slow and limited.
Additionally, the Google Store and AppStore would show a
warning when trying to install a game over a certain size and
most people would simply not install when the warning showed
up. One of the reasons not to use Unity back then was because
Unity on its own added quite a few megabytes, and that was a
big no-no.

Developing for mobile was definitely an interesting experience
especially back at the time between the iPhone 3GS and the
iPhone 4. For the upgrade to iPhone 4, Apple pretty much
quadrupled the number of pixels and doubled the resolution,
but the GPU wasn’t much better. Suddenly you render the game
on an iPhone 4, which is supposed to be better, but the frame
rate is just shit compared to an iPhone 3GS. The other fun part

1. Binary size refers to the size of the binary files built from source code and
other assets.

68 Behind the Black Box

of working on mobile was memory, and this is something that
is often shared by people who worked on older consoles where
memory was so limited. In much the same way, mobile was also
extremely limited; you had to make sure that you knew exactly
how much memory is used by your app and GPU at any given
time.

Caching in on Memory

I feel like the biggest concerns with developing solely for iOS
were memory management and performance. We really
wanted to hit 60 frames per second and have it very smooth
with no frame drops whatsoever. We also had problems keeping
memory low so the app doesn’t get killed randomly by the
OS, which was really annoying on mobile platforms. We had to
make some kind of a list of least-used memory so if a block of
memory was not being used then you could just discard it. We
also had to limit and deny allocations above a certain amount of
memory. It involves making sure that everything fits into a very
specific and tight memory requirement, and it means that we
have to immediately discard anything that was not used when
you had to have something allocated.

On the other hand, we would not just immediately discard a tex-
ture if it doesn’t have references because it might have a refer-
ence in five frames, and loading it again would be silly. If you
have it in memory and then a new memory allocation needs to
be made and that texture is occupying the least used memory
block, then you can discard it. That’s LRU cache2 basically. Get-
ting the scene and managing it with all of the assets and man-
aging the level so they fit into that very tight requirement was a
very large amount of work, especially because Super Sam was an
infinite scroller; you’d basically fall down in this specific type of
world environment, and then at some point it might change to a
different one. We had to make sure that these change areas were
as seamless as possible and without any kind of frame spikes.

When it comes to dealing with memory management issues,

2. A Least Recently Used cache scheme is a strategy for evicting data from a
memory cache based on how recently the data has been accessed.

Going Beyond the Books 69

you should determine how much memory you’re actually allo-
cating and whether or not that matches your diagnostic tool.
Then you can see how much memory is in graphics, how much
of that is textures, and how much is meshes, and so on. Not to
mention how much memory is going to your entity compo-
nent system data. It’s a really big question of how much mem-
ory you actually need and how strict you need to be in memory
management. The game I’m working on right now is for PC,
not mobile, so instead of being very strict on memory, I’m just
focusing on the way that memory and systems are being used.
Because of this, I don’t need to track it all in a centralized place.
On mobile, where memory was way tighter, it was definitely
needed.

Engine API Design is a Thing

I’ve taken the approaches of both overriding the new and delete
functions and constructing my own APIs for memory manage-
ment. Even so, I can’t say which one I prefer. I guess overwrit-
ing it made it easy to ensure that everyone is using it, but it was
very implicit and sometimes implicit is not very good. I often
find if you’re managing memory, then you probably want to
know exactly what memory allocator you’re using anyway. So
just overwriting a global function is not necessarily the best idea.

For example, if I want to do a temporary allocation that’s nearly
immediately released, then I know I need to access the linear
memory allocator (one that is reset every frame) and I probably
also know the size, so I can instantiate a specific memory allo-
cator. But if I override the global new allocator and then I have

a general memory management class that tries to manage all
kinds of use cases, it’s probably not going to do the best job.
It might do a good job, but the best is when the user actually
knows what they’re trying to achieve and they can access a spe-
cialized function or API to do exactly that. Also, the platform
memory allocators have improved so much in recent years that
if you’re just replacing the new allocator, there might not be a lot

of advantage to it, but if you have a specific use case that needs
to be optimized then you should use a memory allocator there.

70 Behind the Black Box

I’ll give a quick example of this: When making systems, you
often need to allocate memory blocks for your entity compo-
nents (i.e. this is my transformation, this is my physics compo-
nent, etc.) You know exactly what the page size is going to be,
so you can just use a custom allocator for that system. You also
know roughly how many entities you’re going to have, and even
if you didn’t anticipate and you had to increase the size of the
memory block, then you can easily just acquire another mem-
ory block and use it for the memory allocator later. Then you
can, again, just allocate and release pages from that allocator for
the specific use case. That’s where I find memory allocators to
be more useful — when I know how they’re going to be used,
and what they’re going to do exactly. In that way, the user can
specify the memory size they want and where it will go.

Following a similar principle outside of memory API, no matter
what engine I’m working on, I try to make an API as small and
easy to use as possible. To do that, I do some stuff that other
developers would probably kill me for. There is different advice
out there on the use of singletons versus dependency injec-
tions3, but generally the consensus is that you should have some
kind of a context for whatever stuff that you’re using. But at the
end of the day, if I am a game developer using an engine, all I
really want to know is where on the screen my mouse is! So I
literally just have a namespace Input, and GetMousePosition is

a global function in that namespace. Having a namespace hous-
ing functions is something that can be controversial, because the
function doesn’t have context as to which window it is listen-
ing to. However, I find it very easy to use because I can easily
tell someone to go into the codebase and do Input::GetMouse-
Position, Input::GetMouseButton, etc., and structuring it like

that really helped my productivity. So I try to figure out the APIs
in terms of what is going to be useful and how easy it will be use
it. What does the developer need to do, and how will the API
accommodate that?

The trouble often comes when your system tries to do too

3. Dependency injection is a technique where one object supplies the dependen-
cies of another object. A dependency is something that one object needs to run
correctly, and injection is the process of passing one object to another.

Going Beyond the Books 71

much. That’s why I advocate making small, specialized systems
as opposed to big, beastly systems. For example, if you have
a rendering system and inside that you have an AddWater and

AddBox and AddSphere, then it can probably be split into a few

different systems, each specializing in their own specific things.

Good API design can also help port your game to a new plat-
form. At the end of the day, if you expose all of your engine’s
functionality then you can figure out a way around it later. So
if you have access to the keyboard and mouse input and also to
touch inputs as part of the engine, then you don’t need to specif-
ically map touch input to a mouse button or a mouse input. You
can map it that way, but you don’t always want to do it. Often
if you do it that way, people will say “hey, I need a way to rec-
ognize gesture and multi-touch” and so on, and it will just come
and bite you back if you’ve done premature abstraction. That’s
another lesson, not to do too much abstraction. As long as you
have your own engine layer communicating with the OS and
then give in the data with the least abstraction as possible and
just hide what OS it is and hide what functionality is, then that
will be good enough.

Editing with a Level Editor

For developing a level editor, the best advice I can give is to fig-
ure out what is actually needed out of it. Determine who is going
to use it and the first functionality or two that they are going to
need, and then work from there. It doesn’t need to be perfect,
it just needs to have the bare minimum of functionality sup-
ported. For example, in my editor, I have three main function-
alities that I need. One of them is the elevation editing for the
heightmap4, another is the texture editing for the terrain, and
the last one is the placement of entities into the world. Once you
identify those minimum features, you should be able to imple-
ment the editor pretty quickly.

The biggest mistake I learned from that experience is over-

4. In computer graphics and games, a heightmap is a texture (rasterized image)
where pixels have different meaning rather than representing color. One com-
mon usage of heightmap is to store surface elevation data.

72 Behind the Black Box

engineering; do not make features for the sake of making fea-
tures, ever. This is especially the case when you’re working on
an engine, where you should always have a use case in mind. It’s
ideal if you are able to make a small game while you’re making
the engine, even if it’s as simple as Pong or Breakout. If you can
make something like that with your engine easily, then you’re
doing well!

When I made my very first level editor, it was very tightly
related to the game engine itself. That was the first mistake,
because it was basically living in the same application and code-
base, and so it affected everything else a lot. When making the
Super Sam editor, it was an entirely different application, and it
didn’t even share any of the code base; all it needed to know was
the level format and how to output that. We didn’t even use the
engine to render the levels.

The biggest question that we had back then was how to make
the levels be supported across multiple games and versions. The
level format was used for Bitter Sam, Super Sam, Super Sam Adven-
tures, and possibly other games in the future. Figuring out how
to differentiate between different games in your level format
when using the same editor was one question, and the other was
figuring out versioning if you added a new component or crea-
ture. We also needed to be able to work around the different
versions of the app that may be installed on smartphones. There
could potentially be a mismatch between the version of the
game on the phone and the level being downloaded from the
server, which is completely unrelated to the update mechanism
on the phone. If the level has something like a new monster in
it but its texture isn’t in the application, then things don’t work.
For those reasons, compatibility support was really important
back then.

The level editor of Super Sam was using a different framework
to render the things in the editor as compared to the game.
Personally, I want to match my level editor renderer with my
engine renderer as closely as I can. I love it when you have “what
you see is what you get”, and also when you can play inside the
editor. However, that’s possibly over-engineering at times and

Going Beyond the Books 73

brings in too many additional features. For my current level edi-
tor, I am using my game engine, but I’m making it in an entirely
new application and only linking to whatever code that I need
to. For example, right now I’m not linking to any of the game-
play stuff, but only to the rendering frameworks and the input
and so on.

Using the engine’s render in the editor you get the same look
and feel, you get the same kind of performance, but it’s not
the only option. If you look at games like Warcraft and Starcraft,
they have a level editor which is not using their engine’s UI; it’s
using just generic OS UI. But they have a viewport5 that draws
the game window into it, and even in that viewport they added
functionality for things like zooming out further in the game.
That’s just an example of you having all the UI in your game
engine, or mix and match; you can use OS functionality to make
UI easier to do, while also importing the entity rendering and
terrain rendering from your engine to do that.

After-Hours Game Engine

For my own engine architecture, I find that the biggest challenge
is rendering large levels efficiently. My solution to that is chunk-
ing the world into different segments, which will let you imme-
diately discard thousands of objects because they are off-screen.
Another challenge is AI. My RTS is atypical because you can’t
control every unit; each unit has its own priorities and goals it
wants to achieve in life (like making a video game!). I’m using a
goal-oriented action planner6. So in the beginning, when hav-
ing only a hundred entities, there’s not much of a problem. But
then, as you get to thousands of entities, you have to manage
to keep some level of detail for the AI. You can’t just make the
AI stop functioning because they are off-screen; they are still
alive and progressing. That’s an interesting challenge that’s so
far removed from rendering, which I feel like is my main exper-

5. In the context of games, a viewport is a region of a 2D rectangle that’s used to
project the 3D scene to a virtual camera and thus provide a way to view the 3D
virtual world.

6. Goal-oriented action planner (GOAP) is an artificial intelligence system for
agents that allows them to plan a sequence of actions to satisfy a particular goal.
For a detailed explanation, visit http://alumni.media.mit.edu/~jorkin/goap.html

74 Behind the Black Box

tise. I can’t just say “If you don’t see it, it doesn’t exist.” When a
tree falls in the forest and nobody is around, it still exists!

When developing a system I try to keep it as minimal and
specialized as I can. For example, I’ll do something like a
quadtree7 division with rendering, and that way it’s really easy
to discard entities not present on the screen. Similarly, using this
quadtree division, I can put it into the AI and just update them
at a different level of detail. That’s the main consideration that
I’ve had with my engine. Other than that, rendering things that
scale terrain is a lot of fun. Just using CDLOD8 for the giant ter-
rain.

If I remember correctly, the way I handled serialization in Super
Sam was to just give an entity minimal transformation stuff like
position and rotation, and then a tag of what entity it is. With
my RTS, I take a similar approach where I have a blueprint that
all entities can be instantiated from. In my case, I would have a
footman or a werewolf blueprint, and then I can just say that an
entity is referring to this blueprint while it holds its own trans-
formation in the world.

An interesting thing which I still haven’t decided what to do if I
need to have a unique entity for a level. The current idea I have
is to add an additional blueprint definition that is level-specific,
and then when instantiating that special entity it will still use
the same system saying “this is my position and this is the blue-
print header file and that will have all of the data.” I’m still not
sure about this approach, because what if I went to add, say, a
wounded soldier somewhere? Do I need to make a special blue-
print for him? That’s a problem that I just haven’t reached yet,
and there are different ideas on how to solve it. At the moment,
I’m using JSON9 to serialize stuff. I find that it’s really useful if

7. Quadtree is a special type of tree data structure used in spatial partitioning. It
recursively divides the whole space into four quads of the same size, and keeps
doing it until each leaf quad contains a certain amount of actual spatial units
(like polygons when used for rendering, and colliders when used for collision
detection). If you are interested in learning more, refer to the Spatial Partition-
ing chapter in Game Programming Patterns.

8. CDLOD is short for the paper titled Continuous Distance-Dependent Level of
Detail Rendering Heightmaps. It describes a technique for GPU-based render-
ing of heightmap terrains.

9. JSON (JavaScript Object Notation) is a lightweight data-interchange format

Going Beyond the Books 75

you do not have a binary format when you’re just starting with
things. If you’re just getting to serialization, find a format that is
easy to use and is human-readable, and only when you need to
publish a product make it into a binary format that is small and
specialized.

Being Your Own Product Manager

If you’re doing a personal project at the same time you’re work-
ing a full-time job, you basically have to be your own product
manager. You have to set goals both for your time at work and
your time at home. You have to say, “okay, I’m going to work
and I need to get to these milestones. Today I’m going to shape
this feature.” And then you focus on that specific feature. But
then when you head back home, it’s really easy to just lie down
in bed, watch Netflix, and neglect your project.

The only way to prevent it is not by gathering motivation but
by being persistent. You have to be determined to spend at least
five or ten minutes a day on your personal work. Figuring out
where you left off can be hard, though, so be sure to keep notes
so you can remember what is most important to be working on
at the moment. From there, determine the minimum tasks you
need to do and then just sit down and do them, and the motiva-
tion will come as you do it.

Specialized Engines Aren’t Going Away

Many companies are making very good engines and improving
their existing engines. I think we can look at Unity as an exam-
ple here, because they have a very easy to use and commonly-
used game engine, but even now they are making huge modi-
fications to it. They have the Scriptable Render Pipeline10, and
they are actively developing a new entity component system.
With all that, we can see that even the big engines have to

that can be used for a database. It features a set of syntax that’s both easy for
human to understand and for machine to parse.

10. In Unity, the Scriptable Render Pipeline (SRP) is an alternative to the built-in
pipeline. With the SRP, developers can control and tailor rendering via C#
scripts. This way, they can either slightly modify or completely build and cus-
tomize the render pipeline to their needs.

76 Behind the Black Box

change. I think that’s a sign of why specialized engines still exist;
it’s really difficult to make a generic engine that has everything.

On the one hand, it’s awesome because they’re really making
game development more accessible — I know so many people
that are not going to make a game engine but can just jump
into Unity or Unreal and publish games. On the other hand,
with big engines you’re going to run into problems, like what
happens when I need to have a million entities on the screen
and the engine doesn’t give me instancing11 solutions. We still
see a lot of specialized engines, but the big engines are likely
to improve and get better in performance. The best part about
them is that they have those generalized tools that everyone
likes and can use. People can also overwrite and optimize sys-
tems in the engine where they need. So I think that what we’re
going to see a shift in big game engines that allow the user to
access more low-level data, but also allow them to do stuff at a
high-level if they have no idea what to do at the low-level or
want to get things done quickly. Smaller game engines will still
exist, there will always be control freaks like me who like to do
their own thing.

Interview conducted November 11, 2018.

11. From Wikipedia: Geometry instancing is the practice of rendering multiple
copies of the same mesh in a scene at once. This technique is primarily used
for objects such as trees, grass, or buildings which can be represented as
repeated geometry without appearing unduly repetitive.

Going Beyond the Books 77

Thinking About the Data
Martin Middleton

MMartin Martin Middletoniddleton is the CTO at
Funomena, an independent game
studio in San Francisco he co-
founded in 2012 with Robin
Hunicke. Funomena has put out
award-winning titles on a variety of
platforms, including Luna, Woorld,
and the upcoming Wattam. Previ-
ously Martin was an engine pro-
grammer at thatgamecompany,
where he worked on Flow, Flower,
and Journey.

Pipeline of Code Optimization

When I started engine programming, the most challenging
aspect for me was probably developing core performance. Back
in school while I was learning, the best practices for perfor-
mance were heavily object-oriented with a lot of abstraction.
My most useful classes were Electrical Engineering, which is
especially beneficial for developing on consoles like the PS3,
which has really limited resources and requires you have a deep
understanding of what the actual hardware is doing.

An example of this would be thinking about your memory
usage so when you assign a variable, where is that value actually
coming from? Is it in main memory, is it a local cache, is it

already in the register on the CPU… There’s an order of mag-
nitude of speed difference between all those different layers,
and it can be really easy to ignore that because most program-
ming languages don’t really make that explicit. Overcoming this
challenge means thinking more about it for yourself. When-
ever you’re writing code, you have to internally plan out when
you’ll be loading up certain values or making sure that the data
sticks around in local memory long enough for you to use it.
You might also be thinking about what else the processor can be
doing while it’s waiting that memory to be loaded.

Console platform-based design is very low-level stuff; there
aren’t any console architectures similar to the PS3 anymore.
However, everything is multithreaded these days, so that’s use-
ful knowledge I learned from PS3 and SPU1 programming that
has served me no matter what type of engineering I’m doing.
Figuring out how to shuffle data between different parts of the
hardware so that you’re splitting up this computation, “Do I do
this on the CPU, do I do it on the GPU, how do I transfer the
data between a CPU and the GPU, and what am I doing while
the data is transferring…” I think all that stuff is useful, whatever
the hardware platform is.

In a certain way, the PS3 was ahead of its time because all of
the technology was going in that direction anyway. So it’s just
sort of the early proving technology, where people learn how to
do things that way. Unity’s new component systems are struc-
tured really similarly to how PS3 engines were structured; we
were focused on batching and pipelining things into really small
chunks of code that just reads through. It was all about structur-
ing everything to process buffers of data as easily as possible. I
don’t think it’s a coincidence that Unity hired a bunch of senior
engineers from Naughty Dog and Insomniac…

At thatgamecompany, I was doing a lot of SPU intrinsic pro-
gramming, which is a subset of C++. You would use functions
that utilize assembly commands, which would tell the processor

1. A Synergistic Processing Unit (SPU) is the processing unit associated with the
Cell architecture of the PS3. The PS3 had seven as part of its hardware, only six
of which were usable by game developers.

Thinking About the Data 79

what exactly to do. However, the problem with this is that you’re
focusing on one specific problem, and it makes your code brit-
tle. If you need to change that code later on, you have to undo a
lot of what you’ve already done.

But there is sort of a halfway point; if you can get into a mindset
where you’re always thinking about memory usage, that’s some-
thing that you will benefit from across the board. Writing code
in that style makes it very straightforward, so writing up opti-
mizable code is something that always pays off. Usually that
involves being really explicit about when you’re loading or writ-
ing data. That’s not really abstracting things away too much so
there’s sort of no “magic.” If something happens automatically,
or “magically,” it’s usually very suspicious.

It’s also more about knowing what exactly is being allocated,
and then in what order code it’s being updated, not whether it
is object or data-oriented. John Carmack has this recommen-
dation that you step through an entire frame per game and
step into every single function so you can experience like the
entirety of everything that happens in a frame. That takes a
really long time, so designing your engine in a way that makes
that possible is a good methodology.

Engines Should Guide Games, Not Direct Them

Most engines are built to guide you towards a specific type of
game or a specific type of implementation. This is one of the
reasons why at thatgamecompany we used PhyreEngine2 as a
framework, we had access to the source code and we were espe-
cially deliberate about which features we decided to implement.
We didn’t want the existing engine to influence how our game
progressed. If you’re regularly fighting your engine, then you
start to question the point in using an engine. You might as well
use something a bit lighter, like a framework.

So there’s always a trade-off when it comes to how much of

2. PhyreEngine is Sony’s game engine that is freely available for PlayStation
developers. The engine is compatible with the PlayStation platforms of the last
decade.

80 Behind the Black Box

this engine you can use versus what really needs to be side-
tracked. With Unity, one example would be the update system;
the engine doesn’t give you explicit control over the update
loop. You have a script execution order, but the MonoBehaviour
system can be really heavy, especially if you have a lot of objects.
Often you end up writing your own entity in a really lightweight
entity-system3 and writing your own explicit update system so
you have full control over that.

Custom Entity System in Unity

For our entity system in Unity, we were trying to solve two
separate problems. One was when we’d have a whole bunch of
objects that are represented by particles or not tied to a mesh.
Having 100 game objects is really expensive, so instead we’d
just turn that into a really lightweight class and separate that
from the game object hierarchy, which makes it very specific to
a system. The other problem is controlling the updates. A lot
of game objects don’t necessarily need to update every frame,
and I think Unity has optimized this a lot, but when we first
started using Unity, there was just a really big overhead to hav-
ing even an empty MonoBehaviour4 with nothing implemented.

Being able to explicitly have an update loop and dictate which
objects are active and which functions they own is good for opti-
mizing, as opposed to having to send messages in every single
object to see if it has a handler or not.

For Wattam, we’re using both our own entity system and Unity’s
GameObject system. The way it works is, by default, we will start

with something derived from MonoBehaviour, and if it turns out

that we need a lot of those “residents” in an array at a time, then
we’ll decide they don’t all need to have their own transform in
the scene graph5 and I can just give them a “simple transform”,
which uses a Vector3 for the position and the Quaternion for

3. A pure entity-system is similar to a flat hierarchy, where the entities hold data
and functions to be called by the system manager.

4. MonoBehaviour is the base class within Unity that all components which
attach to GameObject must derive from, it has methods for start, update, and
destroy, among a ton of others.

5. The scene graph of a game engine holds the entities and components (includ-
ing transforms and parent hierarchies) of a level, also known as a scene.

Thinking About the Data 81

rotation. I think that’s actually my biggest gripe with Unity, that
in order to just store a Transform you have to hook it into the

scene graph, which just makes everything really slow and heavy.
So I think having a lot of objects where you can write out their
position and rotation without needing to be plugged into an
update loop is really good.

Thoughts on Unity and PhyreEngine

While Unity is free for non-professionals, I haven’t found it to
be as accessible as PhyreEngine. Phyre was available for any-
one who was a PlayStation developer; you could just download
it from their dev forum. Sony also made Phyre’s source code
available so you can modify it, whereas Unity is much more of
a black box.

For professional development, Unity is actually our second-
highest cost in software, coming only after Maya. Unity has a
somewhat pricey monthly subscription fee as well. On the other
hand, Unity is much more widely used while the Phyre team
was very small within Sony. They were very limited resources-
wise, whereas Unity is an enormous organization with lots of
engineers. That being said, Unity had not prioritized console
development at all for a long time; they just didn’t see that as
their audience. Developing a console title with Unity was kind
of a struggle, and still is in some ways. They’re just now starting
to support console development more, I think because the plat-
form holders themselves are investing resources because they
know that a lot of people use Unity.

Technology from Flower to Journey

A lot of the Journey engine was the Flower engine. We started
developing Journey with the Flower engine pretty early on
because we really wanted to focus on an engine we could iterate
on and develop and use for multiple projects. The structure of
it was meant to support multithreading really well, and having
systems for gathering up data and sending them off to the SPU’s
and synchronizing and reporting back when those SPU’s were
finished with the data.

82 Behind the Black Box

Animation support needed to be built for Journey, because the
Flower engine initially didn’t have much, since most of the ani-
mation in Flower was procedural. Journey’s sand system also
evolved from the grass in Flower; I kind of started off by using
the structure of the grass system. In that game, the grass was our
test for SPU usage, so any time we had extra SPU resources we
would just give it to the grass system so it could render a little
bit more grass, or push out the LOD6 a bit more.

The other main system we had to add for Journey was network-
ing. Going from a non-networked game to a networked game
is a pretty big shift, because all of a sudden, all your impor-
tant objects and game events have to be serialized7 and address-
able with IDs. At that point, you can’t just store a list of pointers
anymore, because those pointers aren’t going to work across
machines. You have to think of a higher level way of referring to
them.

Switching those references from pointers to an index/ID-based
reference system was something that was more challenging than
expected. Another big challenge was figuring out how many
players to support beforehand. Journey was peer-to-peer8, so
one of the clients acted as the server. Initially, we wanted to sup-
port four people at a time, but that wound up being too com-
plicated and out of scope for us to implement. That changes the
design a lot, since scenarios meant for four people needed to
work for two people. Figuring out the specifics of multiplayer is
good to do early on in the development process.

There’s also the whole aspect of synchronization between
machines. We had two different update paths: One was for con-
tent that relies on the other machine to know about, and then
the other for things, like particle effects, that can be done locally.

6. Level of Detail (LOD) is the process of simplifying a model/mesh by removing
vertices and detail. This typically occurs when the model is far enough such
that the details are relatively insignificant compared to others in the viewport.

7. Serialization is the process of data being converted into a byte stream for eas-
ier storage and transfer, think of it as similar to a save and load system.

8. Peer-to-peer networking is where every machine to one another, which
requires more bandwidth per client and more complex data authority handling
but avoids needing a dedicated server. Peer-to-peer is generally harder to
implement than client-server.

Thinking About the Data 83

If you start off with that in mind, then it gets a lot easier later on.
Otherwise, it can be hard to keep track of what’s being synchro-
nized and what isn’t. If you start to try to synchronize some-
thing after the fact, then you have all these side effects that you
weren’t expecting, which often leads to many other things you
have to synchronize as well. It depends on the authority9 and
on how accurate you need to be. For example, in a competitive
multiplayer game where you are targeting something, which
player’s machine decides if the shot actually connects? Then
waiting for the other machine to agree with you can sometimes
take too long, so you have to start reacting to what you think
happened, and then be able to back out of that if it turns out that
both machines don’t agree.

Journey’s Peer Networking System

For Journey’s networking, the peer-matching system was based
on the lobby system that Sony provided. The way it worked was
levels were split up into grids, so depending on which grid cell
you were in, you’d join a room that was sort of like a hash10 with
the grid cell and their specific game state. Once you join that
room, everyone in the room gets a message that you joined and
they send you their data. It compares the two players’ pings and
what game flags have changed, and from there it determines
whether the two people are compatible.

One interesting aspect to this is that we implemented a max-
imum room size — otherwise the room could be flooded by
tons of people spamming each other with messages. If a room
becomes too big, then you create a new room. That means the
number of rooms grows as the audience grows. But the game’s
online play goes through periods of more and less activity, so
then you have the issue where there are a whole lot of rooms
but there are only a couple people in each room, and they’re all
stranded from each other. To solve this, I ran a room defrag-

9. Authority with regards to networking is when a certain machine, typically the
server, has the control (final decision) on the state of a variable/script/entity.

10. A hash is a structure that maps keys to values through a formula defined to
convert structures into an index, typically the formula is constructed to avoid
collisions between similar objects. The hash of the same object will always
return the same value.

84 Behind the Black Box

mentation11 system where if a player is in one room for too long,
they would leave and try to join a busier room.

Matchmaking was one of my biggest fears in the development
process. We had been talking to other developers of online
games at the time, and they said when your game first launches,
there’s a big spike in players but that often tails off over time
as players move on from your game. You have to design for
two online environments: The popular and unpopular. On Jour-
ney, we planned for both early on, but the fact that people were
still playing six months after launch was nice to see. We weren’t
expecting that because we had heard how quickly online player
bases drop off. Even years after, I was still able to show some-
body Journey and managed to connect with people in-game,
which really makes me happy!

Versioning & Deploying Tools

At thatgamecompany, we initially developed web tools for two
reasons. One was the restart game issue — we wanted our devel-
opers to be able to live update values, but developing the editor
into the actual engine itself would have been way too hard. So
we knew we needed some kind of remote editor. Our second
reason was the fact that UI for web is immensely easier, espe-
cially at the time. I think web tools can be a pretty good system,
but the main issue is that once you get to a certain level of com-
plexity, it becomes much harder. I don’t see a really advanced
complex animation tool like Maya, for instance, being deployed
on a web platform anytime soon.

With executable/desktop tools there were some deployment
issues where I’d add a new feature, and it would take everyone
on the team a while to be using that change. For that change
to propagate, it would get deployed on people’s machines on
the PS3 side. When you’re developing any type of networking,
early on you learn that you need to implement a version-num-

11. Defragmentation is the process of reducing fragmentation (well that’s a dumb
definition), where fragmentation is where memory is used inefficiently with
lots of gaps in between used memory chunks. In this context, defragmentation
is used in the sense of keeping the rooms fully utilized, not wasting space on a
fairly empty room.

Thinking About the Data 85

ber protocol12 that doesn’t really change so that it’s backward-
compatible. If you have this version, in a worst-case scenario
you can just ignore any messages that are coming from an older
version. On the website with our tools on it, I like supporting
several older versions at a time so that my teammates can down-
load the new PS3 code and update it on their time.

Implications of Prototyping

At Funomena, we are still figuring out how to handle prototyp-
ing phases. The platonic “ideal” is that you handle prototyping
separately, and then everything is locked down and you imple-
ment it. Unfortunately, it never really works that way, because
after you’ve invested a lot of work into a system, it’s tough to
start from scratch all over again — especially since it’s around
that time when people are really itching to see a more polished
demo. For certain prototypes, I definitely encourage doing that
in entirely separate projects so you’re working in a different
codebase. Maybe you branch it so that you can clean it up and
try merging it back in. If you take the path of least resistance,
that code will eventually make its way back in, so don’t be too
sloppy with it.

It can be challenging to make the separation between your dif-
ferent feature implementations. With Journey, for instance, a lot
of systems were tightly interconnected with each other. That
made it hard to design a specific thing in isolation because it was
depending on all these other things as well. In that situation, I
think what you do is you get more comfortable at dealing with
the technical bit and foreseeing what problems could arise when
combining two things. The trick is to be really explicit about
your assumptions in the code, so down the line you’ll know to
change it if those assumptions are no longer true.

The Spectrum of Engine Development

I think if you’re learning about engines, one way to do it is to

12. Each layer of the network stack has a duty, but they can follow those duties in
different ways, and the different implementations of a layer is labeled a proto-
col.

86 Behind the Black Box

start with what specifically you want to learn (i.e. how appli-
cation context13 works in Windows), and with other things
(i.e. graphics rendering), you can find a lightweight framework
to use. Then, over time, you can replace it bit by bit with some-
thing you make yourself. In this way, you can make something
fully your own. I have also done a lot of audio programming
on games that I’ve worked on, but I never wrote an actual audio
renderer14. I always relied on either SCREAM, which was Sony’s
audio library, or Wwise, the industry standard. At some point,
I think it would be fun to write my own audio code, but it’s
already written and more importantly most of the sound
designers that we work with are comfortable with Wwise, and so
it doesn’t make sense to mess with that.

Unity is far on one end of the spectrum, and then at the other
end is the Casey Muratori “write everything yourself” method
in Handmade Hero. There’s a lot of in-between as well; you don’t
have to go so heavy-handed as an engine. There’s SDL15, or
graphics wrappers where you just write forward to the wrapper
and it handles the underlying OpenGL16 or DirectX17. There
are also lighter frameworks that bring in bits and pieces like
meshoptimizer to build a library — things you wouldn’t have
the time to make otherwise. I think that’s a really good way to
learn.

Interview conducted October 3, 2018.

13. Application context is the context, the set of data required to interrupt and
continue a task, of an application.

14. An audio renderer is a system which plays/outputs spatialized sound, sound
that is positioned in the world.

15. Simple DirectMedia Layer (SDL) is a hardware abstraction layer for audio,
input, and graphics across multiple platforms.

16. OpenGL, short for Open Graphics Library, a cross-language, cross-platform
application programming interface (API) for rendering 2D and 3D vector
graphics. The API is typically used to interact with a graphics processing unit
(GPU), to achieve hardware-accelerated rendering. It’s the underlying render-
ing library for many modern game engines.

17. Microsoft DirectX is a collection of application programming interfaces (APIs)
for handling tasks related to multimedia, especially game programming, on
Microsoft platforms, like Windows and Xbox. It is most known for Direct3D
which is the graphics API used for creating windows and rendering, and serves
similar purposes as OpenGL.

Thinking About the Data 87

The Engine Sandwich: Made with
Super Meat

Tommy Refenes

TTommommy Ry Refefenesenes is the programmer
for the million-selling and award-
winning Super Meat Boy and the
lead programmer on the upcoming
Super Meat Boy Forever. He also
appeared in Indie Game: The
Movie.

Compartmentalizing is Key

Regarding my first attempt at a game engine, I experimented
with making a game engine right before I started working in
the games industry. I got really confused while working on
it, but it was really helpful going through the process. It pre-
pared me more for working on the 2x engine1 and then porting
that engine to the Xbox 360 and working on the 360. By the
time I left that first company, I learned the benefits of engine
abstraction2 and trying to keep platform-dependent3 code sep-

1. 2x Engine Refers to Unreal Engine 2.x, which was originally debuted in 2002
with America’s Army. The Unreal Engine is a source-available game engine
developed by Epic Games.

2. Engine abstraction is the part of the engine code which depends on the hard-
ware/software platform that the engine runs on and will be different on each
platform. For example, the code that talks to the operating system on macOS

arate from game code. This is important because in the first
engines I would write, everything was all just one project. It
was just a quick and dirty way to make something that worked.
These are the places where you have to compartmentalize the
different parts of development. For instance, the way my cur-
rent engine is structured, there is no concept of Xbox, Switch, or
PlayStation in the code of Super Meat Boy or Super Meat Boy For-
ever. There’s very little concept of platform even in the engine
code, which is the piece that actually talks to the platforms.

The biggest point of confusion when I was starting out was actu-
ally learning how to properly abstract and compartmentalize
and implant, because when you’re at the beginning of making
an engine, where the hell do you start? That’s a huge challenge;
even getting something simple like a triangle drawing on the
screen takes 100 lines of OpenGL4 code or 200 lines of DirectX5

code. From that point, even when you have a triangle on-screen,
where do you go from there? I think learning that I needed to
compartmentalize, having: my asset loader, my game, my con-
troller code, my audio code, having all those things… I think that
was the biggest point of confusion for me. Being able to com-
partmentalize those systems actually allowed me to have that
starting point.

Basic Principles of Abstraction

Right before PAX last year, Forever was only running on Switch
but two or three days before the convention, I realized I wanted

will be different from that on Windows. Engine developers usually tackle this
problem by having an abstraction layer on top of operating system code. So the
code above that layer still looks the same when you swap out the underlying
operating system.

3. Platform-dependent code is application code that is dependent on one operat-
ing system, and typically won’t run on multiple.

4. OpenGL is short for Open Graphics Library — a cross-language, cross-plat-
form application programming interface (API) for rendering 2D and 3D vector
graphics. The API is typically used to interact with a graphics processing unit
(GPU), to achieve hardware-accelerated rendering. It’s the underlying render-
ing library for many modern game engines.

5. Microsoft DirectX is a collection of application programming interfaces (APIs)
for handling tasks related to multimedia, especially game programming, on
Microsoft platforms, like Windows and Xbox. It is most known for Direct3D
which is the graphics API used for creating windows and rendering, and serves
similar purposes as OpenGL.

The Engine Sandwich: Made with Super Meat 89

to be able to show it in 1080p because I only had the handheld
Switches to show at our booth. At first, I thought I should just
buy some computers, but then I looked over on my desk and
saw my two Xbox dev kits. So I ported to Xbox in about two
days, and then PlayStation in a day and a half. I attribute this
quick turnaround time to how the engine is structured. If it
weren’t for abstraction, porting games wouldn’t have been
nearly as easy for me.

The engine has a core layer which consists of memory man-
agement, threading, anything specific to system startup for con-
soles, file reading, and all the very low-level base systems that
will change per platform. The core layer is on the very bottom.
On top of the core layer is the engine layer, which sits between
the core and the game (which is at the very very top). The
engine layer handles stuff like asset management, including the
SWF6 reader and Spine7. It also contains gameplay information,
such as levels and the base level of your characters and players.

6. Small Web Format (SWF) is an Adobe Flash file format used for multimedia,
vector graphics and ActionScript. SWF files can contain animations or applets
of varying degrees of interactivity and function.

7. Spine is a 2D skeletal animation software for video games by Esoteric Software.

90 Behind the Black Box

You build upwards from the engine layer to make your game,
but it has all the tools for making a level, like placing tiles from
assets. If you imagine the engine layer is sitting there as a sand-
wich between core layer on the bottom and game layer on top,
out to the side you have graphics, audio, input, etc. All of those
are abstracted out, so if I want to load an asset I go into Tommu-
nism Graphics (the namespace and the name of my engine), and
then access Texture and from there Create Texture. All of those
exist in-engine, but that function itself— the low-level Create
Texture function— exists in the graphics layer that talks directly
to the API for that particular platform. On the PC, for instance,
the graphics layer is DirectX 11, and DirectX 11 has all of these
functions that are defined like: Present, Draw, Load Texture,
Load Vertex Buffer, and Load Shader. The engine layer can call
those, so when I compile the static library of DirectX 11, it links
to the engine. The engine layer only cares that Draw, Present—
all these things that I need— are defined in this lower level of
the graphics API. It was easy because I wasn’t porting the engine
or the entire game; I was simply porting graphics and input.

If you abstract to the point where the engine can load in textures
and vertex buffers and shaders, that’s pretty much all you need.
So porting those libraries, those static libraries of inputs and
graphics, audio and whatever else, plus core which is the lower
level stuff with file reading and everything, is all that is needed.
None of those libraries talk to each other; they all talk through
the engine layer, and the gameplay layer talks to the engine
layer, which means that when I ported the Xbox version, I only
had to port about three libraries.

Once I ported those three libraries, as soon as I boot the game
up, it works. Sometimes a couple little weird graphical things
will come up because DirectX 11 works differently on Xbox than
it does on PC or PlayStation 4, so I have to switch some shader
stuff. But every time I port something, I get something on the
screen immediately because everything is abstracted and the
engine doesn’t care as long as functions are defined.

The Engine Sandwich: Made with Super Meat 91

Using 3rd Party Libraries

I like understanding what’s happening in my engine at all layers.
All of the of the render pipelines stuff is custom, the layers that
talk to the Xbox One DirectX 11 API/PlayStation/Switch and any
other platform’s graphics API are all written by me and then put
under my abstraction layer for graphics.

One of the big 3rd party libraries I used was Box2D8. When I
looked at the Box2D code, I thought it was good and I under-
stood how it worked, but didn’t want to write it because I didn’t
want to go through the process of writing a physics engine9 that
can do exactly what Box2D does. That would take iterations of
velocity and position solving, which I’m capable of doing but
wouldn’t want to waste time on. What I did was modified Box2D
to work with the physics in my engine by doing the physics solv-
ing, acting as a solver.

I think the biggest part of game development is the asset
pipeline. With Flash, a lot of the asset pipeline is just taken
care of. In addition to Box2D, there are some other third party
libraries I use. I integrated FMOD10 for audio, because I origi-
nally made my own audio engine for the first Meat Boy but didn’t
want to do that again moving forward. I also used Bink11 by Rad
Game Tools, because cutscenes were getting a little too crazy.
Forever’s black-and-white intro cutscene is rendered as vector,
but everything else is actually movies now because it was just
easier for me to edit the movies and add effects than it was to
put them in Flash. That made life way easier. The way Bink just
plays videos makes things so easy, because all I have to do is
integrate a few things and then movies run on every platform.
Overall, it’s a much better use of my time and money.

8. Box2D is an open source C++ engine for simulating rigid bodies in 2D. Box2D
is developed by Erin Catto and has the zlib license.

9. Physics engine for games usually consists of two parts: collision detection and
collision resolution, and solver refers to the resolution part. Collision detection
detects what objects collide with each other first, and then the solver deter-
mines their correct physical response, like position, rotation, velocity, etc.

10. FMOD is a cross-platform audio engine and authoring tool used throughout
the game industry. It was used by over 2,000 games in the last 15 years.

11. Bink is the defacto video codec for games created by Rad Tools.

92 Behind the Black Box

Customizing toward Flash

The way my engine is structured, there is only one concept of
Flash and that is the SWF file loader. Everything else goes to a
higher concept of animation and instance, so while I have sup-
port for Flash, I also built-in support for Spine and .obj files. The
engine doesn’t care; for instance, some of the things in Super
Meat Boy and Forever I know are going to be Flash animations
because that’s where all of our assets are. For Meat Boy’s char-
acter animations, I have a CharacterAnimation_Flash class that

is part of character animation, but the Flash would have special
little things. This lets me use the best parts of different file types
and the engine is able to render them regardless. That way it’s
not pigeon-holed or anything, it’s just a thing that the engine
supports. This versatility gives me a lot of options for future
projects. Down the road, if I want to make a 3D Meat Boy, I can
just make a 3D Meat Boy with the engine. Or if we were going
to do hand-drawn pixel art, which Flash is terrible for, I can do
that.

Tools for Your Teammates

My philosophy is whatever program my artists or designers are
comfortable working in, I’m going to try to make it so that they
can continue their work with that program. I know that on my
own, I am not going to make something that is better than what
they’re used to.

If you think of this with regards to programming, I’m very used
to C++, and people always ask me if I’m going to use Jonathan
Blow’s JAI12. And I tell them no, because I’m comfortable with
C++. I’m not looking to change it, I don’t think C++ really needs
to be better because I’ve worked around the limitations of it for
so long that at this point they’re not limitations anymore.

When making Super Meat Boy, Edmund13 was the most comfort-
able with Flash, just like I was, since we both started out on New-

12. JAI is a language being developed by Jonathan Blow and his at Thekla to
address some of the issues game developers have with the current industry
standard, C++.

13. Edmund McMillen worked on Super Meat Boy together with Tommy as an

The Engine Sandwich: Made with Super Meat 93

grounds14 and everything. It’s what he drew in and animated
in. So instead of making something new or trying to shoehorn
him into some other process, I took the burden on myself. I
made a tool that would let us export all the images, timelines
and animations from Flash. The tool arranged all the assets on
the stage, and then moved and sorted them so they were packed
into the smallest texture possible. Finally, it would export tex-
ture coordinates and go through the timeline, which would be
used by my custom animation index and PNG files that run all
of Super Meat Boy. And that made it easy for Edmund to just
work the way he needed to work.

After Super Meat Boy was done, I thought it was time to cut out
the middleman of PNG files. I wanted to make my engine just
render SWF files, which I figured has to be possible because
Flash renders them. What I did was download the SWF file specs
and read through the full documentation. I found out exactly
what’s in an SWF file and I used that to make the new engine.
The new engine can just load in an SWF. I also tied in some
native code that I can put into actual FLA15 files, and the artists
can export those to SWF.

This goes back to making it easy for the people you are working
with. For example, Paul was making all of the animations for the
enemies and they’re all vector graphics, so we can scale those
to any size and they work in-engine. He doesn’t have to jump
through any hoops. The only thing he and the other anima-
tors can’t use is the Flash’s filter stuff, but I’ve supported a lot of
the filters that are in Flash now because it just makes sense. The
engine renders them fast and it’s a nice little asset package that
you can zip; it does a lot to help out the team.

artist and designer. He is also famous for making The Binding of Isaac and its
remake.

14. Newgrounds is an American online entertainment and social media website
and company. The site hosts user-generated content such as games, movies,
audio, and artwork in four respective site “portals”.

15. FLA is the file format for projects created by Adobe Animate, and can contain
graphics, video, text, audio, and more. They are often saved as SWF files to be
used on the web.

94 Behind the Black Box

Pixel to Vector Art

A lot of Forever is vector graphics, but a lot of it is still raster-
ized16 images that are read and compressed into the SWFs. The
only weird challenge that came with switching over to vector
from raster graphics is the fact that graphics cards are made to
render polygons, and they’re actually pretty garbage at render-
ing textures. That’s why you have games that look like the new
Spider-Man that runs at a steady framerate, but a game that has
a bunch of particle effects that are 2D and has high-resolution
art can run like garbage. It has to do with the fill rate, and the
way you get around the fill rate of the hardware is by carefully
choosing which pixels to render. You really can’t do that with
full-screen PNGs because you have to encode alpha and opti-
mize to make it actually look right. That kind of optimization is
not as trivial as doing a backface cull17, where if I was rendering
a character model, I would only render half of it because you
don’t see the other side.

With the vector stuff, I actually needed to render a little differ-
ently. This meant I got to use more advanced rendering tech-
niques like stencil buffers18 and depth culling19, which actually
makes the vector graphics render way faster than any of the
PNGs. It wasn’t so much a challenge, as it was a different way of
thinking. Everything in Super Meat Boy was just layered PNGs;
you draw your background, you draw your foreground, you go
from bottom up. With vectors, though, you tend to go from top
down and mixing the two can be ridiculously inconvenient.

Stealth Loading in Super Meat Boy

Super Meat Boy and Forever levels consist of the palette and level
information, which then need to be loaded by the engine. Infor-
mation in Super Meat Boy was essentially run-length
encoded20— all the tiles, object positions, and object properties.

16. A rasterized image is one which is represented as a grid of pixels with RGBA
color.

17. Backface culling is the technique of performing visibility checks on a mesh to
not render the back face (face not facing the camera).

18. Stencil buffer is an additional depth buffer to the depth and color buffers.
19. Depth culling is the process of deciding which elements to render based on the

distance from the camera and if it is being hidden by another element.

The Engine Sandwich: Made with Super Meat 95

Those are all very small files that can be read immediately in the
memory and then have direct access through memory. When
you have direct memory access instead of actual file loading,
you don’t have to worry about cache misses or swapping mem-
ory around to be able to load everything. That’s just the level
data; the palette data is your textures and your animations—
everything that has to do with the visuals of the game. For
example, The Forest21 is a palette, so every level in the Forest
uses the forest palette.

In Super Meat Boy, when you would go into the chapter, it would
start playing a little cutscene where we’d introduce the chapter,
and at the same time it would start loading in the palette on a
different thread. During all of this the game would pause, but
you wouldn’t notice it because at the end of the cutscenes it has
the black and white screen that says “The Forest” that goes “dun
dun dunnnn!” Even if you skip the cutscene during that time, it’s
continuing to load the palette. Because the palettes aren’t very
big anyway, it’s only about four seconds so that jingle gives the
game enough time to load everything I have. That’s then cached
so when you’re in the level the only thing it is loading new is
new level data which is anywhere between 5 KB and 50 KB. Even
the craziest levels are only about 100 KB. The textures were
already loaded from the palette, then the game would continue
from there. I utilized a lot with the presentation of the game to
actually background load assets such as palettes. I think the boss
battle cutscenes loaded either during the chapter intro or when
you were on the overworld map getting ready to hit the button
to go into the boss level. Again, the loads were small because the
bosses were just a couple assets, and the levels and palette were
already loaded. So for the Lil’ Slugger22 fight, all that is loaded is
Lil’ Slugger’s animations, which are just him walking. The rea-
son everything seems to load so fast is that all the heavy lifting
is done when the player doesn’t notice it.

20. Run-length encoding is a form of lossless data compression where data is
stored as a single data value and count, for more.

21. The Forest is the first chapter of Super Meat Boy.
22. Lil’ Slugger is the first boss in the Super Meat Boy game.

96 Behind the Black Box

“Garbage Physics”

The garbage physics came about all from iteration23. For For-
ever, I wanted to keep the exact same feel of Meat Boy with
the new game, so a lot of the physics are exactly the same.
The player doesn’t have control over the direction, so physics
from Super Meat Boy like air friction for when you’re turning
around in the air, the amount of time when you’re going in
one direction and then switch to another direction, those don’t
exist in Forever because you don’t have any control over direc-
tion. But how his jump works and the new mechanics, like his
punch and dive, were also developed from what I call “garbage
physics.” There are different obstacles, like fans, that had to be
adjusted for this game, which also required iteration. Nothing
in the game is physically accurate to real physics, not a single
thing. All of Meat Boy’s weird controls are done in-game, not in-
engine.

Interview conducted September 13. 2018.

23. Tommy talked more about the creation of the Meat Boy physics in an inter-
view with Casey Muratori at HandmadeCon 2015.

The Engine Sandwich: Made with Super Meat 97

A Lost Art
Raymond Graham

RaRaymond Grymond Grahamaham has extensive
experience working at the bleeding
edge of technology. He has over 19
years experience developing 3D
interactive entertainment products
for various platforms (Xbox One,
PS4, iOS, Xbox 360, PS3 and many
others). Ray has worked in technical
management, leadership and indi-
vidual contributor positions at sev-
eral leading Gaming and
Entertainment companies, including

Ubisoft, 2K Marin, Electronic Arts and Visual Concepts.

Who is Raymond Graham?

I’m a graphics programmer currently working at Unity, but
I’ve been all over the place. I was born in Jamaica, grew up
in Toronto, Ontario, and went to school at the University of
Waterloo. Out of school, I worked at NuFX in Chicago on some
NBA games, then proceeded to work at Visual Concepts, EA, 2K
Marin, and Ubisoft, working on games like NBA 2K, The Godfa-
ther, BioShock 2, and Splinter Cell: Blacklist as a graphics and tech
lead. I spent some time at Apple working on mobile GPUs, then
ended up going to Unity so that I could still help game develop-
ers even if I’m not working on games.

I’ve been involved with Gameheads Oakland, a nonprofit group
that teaches kids from high school to early college, who have lit-

tle to no game development background on how to make video
games. I’m also part of /dev/color, an organization of black
software engineers across all disciplines, but it’s kind of weird
because I’m one of only two video game engineers in that group
in San Francisco; everybody else works at tech companies! It’s
kind of like a mentorship group, where everyone is trying to
help each other achieve their professional goals. It’s a great way
of meeting more people in software engineering that are like
me, and right now there are about 300+ members across San
Francisco, New York, and most recently Seattle and Atlanta.

The Console Evolution and Engine Implications

For me, the most confusing part of programming on game
engines was understanding how everything fits together. I won-
dered how a game engine even worked in the first place. The
first game I did engine development for was NBA Street, where I
was responsible for all the graphics work as well as loading assets
on disk. I did a really terrible job of it at the time. The game
shipped just fine, but I think I could have done a much better
job if I had learned about things like disk I/O1 and how long it
takes something to read off disk and into memory. If I were to
go back today and do it again, I think I could do it way better.

There weren’t any graphics or engine tricks we employed with
early basketball games; we just worked a lot. It turned out to be
harder than you’d think, because one of the main objectives was
working within the memory and performance budgets. Every
year the games need to introduce new features, which makes it
a challenge to find enough memory to keep pace and fit every-
thing in. What’s more, you only have in a year to do all that.
That’s one of the reasons why I stopped working on basketball
games; I wanted more time to try more cool things and research
more things and make even better features. There were some
really impressive things we did on the basketball games, but
they were only important for sports games. Moving on in my

1. Disk I/O includes read or write operations involving a physical disk. In general,
to load an asset from the disk, the system will need to read it from the hard
disk, write it into the memory (and possibly cache), which takes a lot of time.

A Lost Art 99

career allowed me to explore what else was out there and have
more learning experiences.

Developing for consoles in the late 90’s compared to consoles
today was very similar, but also different in a lot of ways. That’s
because the Nintendo 64 and PlayStation were completely dif-
ferent pieces of hardware with different specs and texture
requirements, which meant the whole pipeline of how you actu-
ally built your data was different. The Nintendo 64 had a com-
pletely different graphics pipeline, but we still tried to abstract
as much as we could. For instance, the engine was designed
with the gameplay stuff in one layer and then the core stuff in
another layer that talks to the hardware so that core layer was
kind of the same on all platforms. Nowadays, with Xbox One,
PS4, and PC all essentially having the same architecture, I would
say the process is a little bit easier.

I think the console makers want to make things easier on the
developers that are making games, and so they want their plat-
form to be as easy to program for as possible. With the way
hardware is now, though, I don’t think we ever will go back to
the PS3s’ style. The thing about SPU is that it works really dif-
ferently from every other platform around, and so being able to
to do it in a way that’s cross-platform and that gives you enough
time to actually really get the most out of that platform is defi-
nitely a challenge. It’s a pity. It makes me real sad, because that’s
likely the way it’s going to stay. It’s disappointing because when
you look at PS3 exclusive games, like the ones Naughty Dog
made; they milked the most they could out of the console. It’s
an incredible platform to get the most power out of, but it’s just
too specialized.

I loved working with the PS3 cell architecture! A little bit of
background: When I worked on NBA Street, PS2 had the VU
architecture with VU0 and VU1 chips2, and with that if you
wanted to get the most out of your graphics platform, you
would have VU1 basically doing the draw calls3, batching4 up the

2. Vector unit architecture (VU) is the architecture for the Emotion Engine that
was used in the Playstation 2 console. The two processing units were focused
for 3D math and predecessor for the vertex shader pipelines.

100 Behind the Black Box

polygons to send them over to the graphics chip. At the time,
that was all a form of assembly language where you would just
have to figure it out. I actually had the four black manuals on my
desk that I would pull out to determine which bit goes where,
and I found that really fun! PS3 and SPU is very similar to that,
except its programming language is either C or C++. My brain
naturally understood how it’s supposed to work: You DMA5 in
and you double buffer6, and you work on the data as more
data is being DMA’d in. From there you stream it out, switch to
another buffer, call for the next DMA. Because of this, you can
work on batches of data in a streaming parallelized fashion.

Porting between Non-Compatible Architectures

Porting BioShock to PS3 was hard, because one of the main
requirements we were given was to keep all the data and level
loading flow the same. The problem with that is that while Xbox
360 and PC have unified memory architecture7, the PS3 does
not. PS3 has video memory and it has main memory, and you
can’t use the video memory for general purpose stuff because it
was too slow to access it directly. With BioShock, we had a game
made for unified memory architecture, and we were trying to
get it to run on PS3; most of the system memory was graphics
related but it couldn’t all fit in the 256 megabytes of the PS3’s
video RAM. So there was this constant struggle of figuring out
how to get the memory to fit. The last thing that we could have
done (but would have been too much work) was cutting the lev-
els up and adding loading screens. Because there was no stream-
ing at that point, it was still “load level” and that was it. We didn’t

3. A draw call is a command from CPU to GPU that contains all the information
encapsulated by CPU about textures, states, shaders, rendering objects, buffers,
etc.

4. Encapsulating a draw call is expensive, and the GPU can render fairly fast, so
batching draw calls up is a good technique to speed up.

5. Direct memory access (DMA) is a technique of computer systems that allows
certain hardware subsystems to access main system memory without taking up
the CPU cycles.

6. Double buffer is the use of two buffers to hold data. By switching the buffers,
the reader can see the complete version of data instead of a partially written
one.

7. Unified memory architecture use a portion of a computer’s RAM rather than
dedicated graphics memory. It is a single memory address space accessible
from any processor in a system.

A Lost Art 101

want to do that because it would change how the player experi-
ences the game, and it would take all sorts of technical work to
do that. In the end, we handled the issue by enabling the virtual
memory8; PS3 had the ability to use its hard drive as a backing
for virtual memory, so we used that to fit the stuff that spilled
over into virtual memory. It wasn’t the greatest solution, and
there’s definitely some noticeable lag in the final product, but it
was the only way that game would have shipped.

After that, we were able to take what we learned when working
on BioShock 2 and were able to budget for the PS3’s memory
restrictions and do it right. Even so, BioShock 2 shipped with the
same PS3 virtual memory system. We had good intentions, but
sometimes you just have to do whatever it takes to get the game
done. That was a really hard problem; even at Ubisoft we faced
the same issue. On PS3 you have these two different memory
pools and then on Xbox 360 you have one, so managing mem-
ory in such a different way was a real challenge.

On the graphics side of BioShock 2, our improvements were
more about making the engine ready to do better visuals on PS3
and Xbox 360 at the same time. We also added a few graphics
features here and there to improve the game’s look. For exam-
ple, we added motion blur and implemented Unreal’s material
editor9 so that the artists could actually have a proper mater-
ial editor to make shaders. Previously the artists would have to
bother programmers to implement every little one-off shader.
All in all, though, we didn’t do too many new engine things for
BioShock 2, since the art style was the same as the original. It
was more about finding little places to improve, and also mak-
ing sure the PS3 version was rock-solid this time. Once that was
done we felt confident shipping it.

The Winding Road of an Engine Developer

I decided to go work at Apple because I had spent about 15

8. Virtual memory is a memory management technique that abstracts uniformed
memory space from different kind of storage device.

9. The Unreal Material Editor is a node-based graph interface that enables you to
create shaders. For more see the Unreal Documentation.

102 Behind the Black Box

years in the game industry. After years at video game studios, I
didn’t really like how the games industry was ballooning. When
I started on NBA Street, I was on a team of only six programmers.
The NBA 2K team was maybe 20 programmers, and then by
the time I was on Splinter Cell: Blacklist, I would be in meetings
with over 100 other programmers. As video games got more
complex, teams got bigger. Today, it’s not uncommon to see
a 800-1,000 person team. I was tired of working on those big
teams, and I just wanted to do something smaller.

Much like Apple, Unity definitely has a very rigorous testing
process, because we make software for millions of people and
that makes testing your code essential. I think I brought back
some knowledge I had of the actual workings of how the chips
on those devices work, which helps us to figure out what the
fastest path is. That’s huge when figuring out the best path to
deliver graphics to phones. Being at Apple helped a lot in under-
standing how mobile devices in general work, so that broadened
my skill set for sure.

PC development is also definitely changing with the times. I
think we’re starting to see more people embracing low-level
graphics APIs like Metal10 and Vulkan11. Pretty much all the con-
sole devs are telling them, “Welcome to the party, we’ve been
doing this for years!” On PS2 and on PS3, we were working with
very specialized low-level API’s that gave you access to the hard-
ware. Finally now that people in the desktop space want Vulkan
and Metal, we can tell them why that’s important. Also, we’re
trying to use ECS12 systems and data-oriented design at Unity,
which I think is also something that we had to do on the console
side to get performance. You had to have your data laid out effi-
ciently to save memory and get performance. Now you’re start-
ing to see that be more of a focus in general code, which I think
is a good thing.

10. Metal is a low-level, low-overhead hardware-accelerated 3D graphic and com-
pute shader application programming interface (API) developed by Apple Inc.

11. Vulkan is a low-overhead, cross-platform 3D graphics and compute API target-
ing high-performance realtime 3D graphics applications such as video games
and interactive media across all platforms.

12. Entity-Component-System (ECS) is an architectural pattern that follows com-
position over inheritance principle and is mostly used in games.

A Lost Art 103

A lot of the other features we make at Unity are driven by the
artists; if there’s something they need to be able to do but don’t
have a solution, we create a solution out of necessity. As a graph-
ics programmer, your number-one client is the art team. We’re
just making sure that they have all the tools they need to actu-
ally use the system.

Working with artists and developers as part of the Spotlight
team is kind of a mix of things. Most of our work is either imple-
menting features for teams and then those features get rolled
back into the engine itself, or we implement a feature for a team
that just makes their game look cool. From there we can write
a blog post about the cool feature that we made. Sometimes we
come in near the end of development or in the middle, so it’s
kind of hard to change processes of how the team’s working
because, at that point, they’re just interested in getting the game
shipped. For that reason, we find it better to work with teams
at the beginning of development so we can run them through
how to make a Unity game really efficient, and from there they
should be good to go. We usually work with a couple teams from
the beginning stages on long engagements that will probably
take a year or more. At the same time, we also will help small
teams with one-off things that take only a month or two. With
these different teams, we provide a variety of assistance.

Advice to Kickstart a Career

The changes in development from early 3D to now are hard to
describe. I think I saw the advent of the programmable shader
pipeline13, which I think completely changed everything. Then
we saw the advent of compute shaders14, which has made getting
into 3D graphics way harder. Back in the day it was much easier,
because all your work just consisted of polygons and lights, and
that was it. Now there’s all these features and techniques that
people are using for specific things, and all these different ren-

13. Programmable shader pipeline allows the developer to customize some phases
in the render pipeline (mostly the vertex processing phase and the fragment
shader phase). It was introduced by OpenGL 3.2 in 2009.

14. A compute shader is a shader stage that is used entirely for computing arbi-
trary information. While it can do rendering, it is generally used for tasks not
directly related to drawing triangles and pixels.

104 Behind the Black Box

der paths15; it’s gotten a lot more complex these days. Keeping
up with all of these new additions and bringing them into my
day-to-day work has been my biggest challenge.

I’ve been thinking a lot about how to help make things acces-
sible for new graphics programmers. Early on, I think every
programmer I knew had made a ray tracer16, and now that’s all
the rage again — everyone’s making ray tracers. I think that’s
a really good starting point, because it’s just understanding the
fundamentals of how light transport, reflections, refractions,
and other essentials work. That’s what helps graphics program-
mers build a solid foundation, and then they can build on that
with more advanced skills. On top of that, definitely read every
paper that’s coming out and the latest things people are doing
in the field. Quite frankly, there’s just too much stuff to know.

I think every good graphics programmer out there has to be
able to communicate with their artists. As a graphics engineer,
you’re responsible for getting them the tools they need to make
sure they fit within performance budgets and memory budgets.
You need to be willing to take criticism and understand their
goals. One of the main pointers I can give is that when people
just come up to you and ask for a new feature, oftentimes
younger programmers will go off and immediately get to work
on that feature. When they bring it back, though, they’ve made
something that is only kind of like what the artist asked for.
When the artist sees it, they ask for something different that will
meet their goals, and start piling more stuff onto the program-
mer. So before you do anything else, it’s good to have an under-
standing of what the problem your artists are trying to solve is.
From there, you can get the requirements of what is needed to
solve that problem, and work with them on how to present the
feature to them. A lot of times programmers will make a feature
and then put some “programmer UI” on it and say it’s done, but
it’s completely unusable thanks to that UI. So figure out how to

15. Render paths are programs to affect the shading/rendering of lighting and
shadow fidelity, along with other graphic details, with different performance
characteristics.

16. In computer graphics, ray tracing is a rendering technique for generating an
image by tracing the path of light as pixels in an image plane and simulating
the effects of its encounters with virtual objects.

A Lost Art 105

make it usable for people who are not you — that’s also another
key thing.

Further down your career when you might be managing, bal-
ancing that with development is a common problem, one that
I still have to this day. I try to manage it by keeping the team
small. When I was at EA, the team was made up of three to four
other graphics engineers, so I was still able to do my usual work
while managing the team. I don’t think I was a terribly good
manager at that time, but I was still able to keep a 50/50 bal-
ance. I think all my management jobs have been like that, where
I try to keep the teams small and still be able to work while
managing. However, if I know there’s a task that’s going to take
months of my time or requires me to sit down and really con-
centrate on something, I’m not gonna have time. I have to pass
something like that on to somebody else who can focus 100% on
that. One task like that specifically was all of the vision modes in
Splinter Cell: Blacklist, like infrared. While it’s a cool task, it also
requires working really closely with artists, and then the design
of it is gonna change constantly. Because I didn’t have the time,
I handed it off to another guy on the team so I don’t even have
to think or worry about it.

A Lost Art

Engine programming is a lost art. It’s important there are students
and developers out there trying something like making a game
engine, because it’s just not being taught anymore. Then think-
ing about it from the perspective of wanting to make a game,
there’s the question of if one should spend two to three years
making an engine for the game, or if they should just use Unity
or Unreal and call it a day.

While there are some real monetary advantages to not writing
your own engine, there’s also different advantages to writing
your own engine. You have to balance the pros and cons of the
engine development process. There’s some people online on
Twitter who will scream that you have to write your own engine
and you have to know it yourself, but I don’t think that’s the
solution for everybody. At the same time, I think understanding

106 Behind the Black Box

how engines work and the low-level stuff is incredibly impor-
tant for all programmers. I think we’ll get to a point where only
a few people know how to make engines really well; we might
already be at that point. These days, I think hiring a graphics or
engine programmer is close to impossible. It’s too hard to find people
that know this stuff.

Interview conducted on October 15, 2018.

A Lost Art 107

About the Team

Jared Ettinger is a creative writer and producer from New York.
He is excited about the intersection of art and technology, par-
ticularly in video games and animation. He worked to further
his production skills by keeping the rest of the team steady on
the wild ride of building an engine.

Caleb Biasco started programming games in the Video Game
Development Club at the University of Minnesota, and hasn’t
stopped since! Seriously. The madman is making game engines
now, someone stop him.

Jacob Wilson is always taking things apart to understand how
they work and sometimes they actually fit back together. His
interests include tool development and long walks on the beach.

Chaojie Zhu has a background in software engineering from
Shanghai Jiao Tong University, and has specific interests in
game AI, self-driving vehicles and software engineering.

Yidi Zhu is a gameplay programmer/designer who enjoys mak-
ing meaningful and playful interactive experiences. He is prob-
ably having too much fun in this swamp of game engine devel-
opment.

About the Publisher

The ETC Press was founded in 2005 under the direction of Dr.
Drew Davidson, the Director of Carnegie Mellon University’s
Entertainment Technology Center (ETC), as an open access,
digital-first publishing house.

What does all that mean?

The ETC Press publishes three types of work: peer-reviewed
work (research-based books, textbooks, academic journals, con-
ference proceedings), general audience work (trade nonfiction,
singles, Well Played singles), and research and white papers.

The common tie for all of these is a focus on issues related to
entertainment technologies as they are applied across a variety
of fields.

Our authors come from a range of backgrounds. Some are tra-
ditional academics. Some are practitioners. And some work in
between. What ties them all together is their ability to write
about the impact of emerging technologies and its significance
in society.

To distinguish our books, the ETC Press has five imprints:

• ETC Press: our traditional academic and peer-reviewed
publications;

• ETC Press: Single: our short “why it matters” books that are
roughly 8,000-25,000 words;

• ETC Press: Signature: our special projects, trade books, and
other curated works that exemplify the best work being
done;

• ETC Press: Report: our white papers and reports produced
by practitioners or academic researchers working in
conjunction with partners; and

• ETC Press: Student: our work with undergraduate and
graduate students

In keeping with that mission, the ETC Press uses emerging tech-
nologies to design all of our books and Lulu, an on-demand
publisher, to distribute our e-books and print books through all
the major retail chains, such as Amazon, Barnes & Noble, Kobo,
and Apple, and we work with The Game Crafter to produce
tabletop games.

We don’t carry an inventory ourselves. Instead, each print book
is created when somebody buys a copy.

Since the ETC Press is an open-access publisher, every book,
journal, and proceeding is available as a free download. We’re
most interested in the sharing and spreading of ideas. We also
have an agreement with the Association for Computing
Machinery (ACM) to list ETC Press publications in the ACM
Digital Library.

Authors retain ownership of their intellectual property. We
release all of our books, journals, and proceedings under one of
two Creative Commons licenses:

• Attribution-NoDerivativeWorks-NonCommercial: This
license allows for published works to remain intact, but
versions can be created; or

• Attribution-NonCommercial-ShareAlike: This license
allows for authors to retain editorial control of their creations
while also encouraging readers to collaboratively rewrite
content.

This is definitely an experiment in the notion of publishing,
and we invite people to participate. We are exploring what it
means to “publish” across multiple media and multiple versions.
We believe this is the future of publication, bridging virtual and
physical media with fluid versions of publications as well as

About the Publisher 111

enabling the creative blurring of what constitutes reading and
writing.

112 About the Publisher

Acknowledgements

The Isetta team would like to firstly thank all of the profession-
als who provided their time, knowledge, and advice through
these interviews. What isn’t seen from the text in the book is
the additional time emailing back and forth trying to figure out
a time that works in their crazy schedules, or the after hours
editing we asked each of them to do. This book would have not
been possible without them, nor would we as students learned
or grown quite as much as we have, and for that we are incred-
ibly grateful. Special thanks go to Cort Stratton, who has been a
huge proponent of the project and wrote the poignant foreword
even though he was experiencing the California wildfires.

A big thanks to Brad King, the editor and director of Carnegie
Mellon University’s ETC Press. He has provided us with count-
less hours of guidance and help in organizing, conducting, edit-
ing, and publishing these interviews — so basically the whole
process!

Our faculty advisors on the project, Ruth Comley and Mike
Christel, have also provided the team with thoughtful guidance
and support throughout the length of the project. We would like
to thank them for being patient with us and trusting us in com-
pleting the project, even if we gave them reasons to doubt.

Before we had our bearings in the subject matter of engine pro-
gramming to even start asking directed questions, we had other
professionals helping us who we’d like to thank. Alice Ching
from Funomena gave us great advice on code reviews and really
put things into perspective for us. Amit Patel and Rob Shillings-
burg spent over an hour of their time with us at GDC, helping us
flesh out our project idea and giving us great general advice on

starting a journey of developing engines and trying to help edu-
cate others, so we extend our thanks to them both as well. We
would also like to thank Jason Gregory in part for creating such
a great resource for us to use in learning engine development, as
well as providing us confidence and reassurance that our project
idea had value early on. Thanks to Walt Destler, ETC alumni,
who spoke with us while we were developing our pitch to give
us advice on engine development, especially as it relates to an
indie game. And also thanks to Oliver Franzke who provided us
with guidance in what to develop with our first game engine and
stopping us before we made some poor decisions early on.

We have also been supported by our other ETC faculty, and
special thanks to Dave Culyba for championing our project and
helping shape it from its infancy, as well as Heather Kelley who
helped connect us to industry professionals when we struggling
to get our start.

Thanks to Yui Wei Tan who, although swamped with other
coursework, volunteered to help a team of non-artistic pro-
grammers come up with amazing cover art.

114 Acknowledgements

	front_cover
	Behind-the-Black-Box-1542753793._print
	Behind the Black Box
	Behind the Black Box
	Contents
	Preface
	Foreword
	Why Game Engine Development is Worth Learning
	An Engine Developer's Toolbox
	Engine Programming is All Plumbing
	The Definition and Beginning of a Game Engine
	Growing Pains in Engine Development
	Wisdom from Working at AAA Studios for 15 Years
	Going Beyond the Books
	Thinking About the Data
	The Engine Sandwich: Made with Super Meat
	A Lost Art
	About the Team
	About the Publisher
	Acknowledgements

