
467

WORKSHOP
I Made That: Game Design Across the Curriculum

Alex Chisholm, Learning Games Network, 222 Third Street, Suite 300, Cambridge, MA 02132,

alex@learninggamesnetwork.org
Kate Cotter, FableVision, 308 Congress Street, 6th Floor, Boston, MA 02210, gary@fablevision.com

Abstract: Digital game design is emerging as an effective way to engage students in
research, creative development, and collaborative project-based learning activities.
The Learning Games Network, a non-profit spin-off of the MIT Education Arcade, and
FableVision, a transmedia storytelling company, have developed the Game Design
Tool Kit, a set of tools to support teachers as they integrate design activities into their
teaching. Focusing on iterative design and development strategies that help teams of
collaborators move from a "big idea" to functional documentation and focused "pitch
materials,” the Game Design Tool Kit is currently deployed with partners at the
Kentucky Student Technology Leadership Program and John Lennon Educational
Tour Bus and is emerging as an effective set of resources to engage students in
learning across a variety of subjects. This hands-on workshop will take participants
through a condensed design development and documentation process.

Workshop Format
During this workshop, we will divide participants into small teams that will explore a pre-selected
group of interdisciplinary topics. Teams will work with the Game Design Tool Kit to develop a
preliminary learning game concept. Although workshop time is limited, we will preview all stages of
the Game Design Tool Kit methodology to give participants a solid context of how it can be integrated
into the curriculum or used in lieu of other project-based learning activities.

Explore-Discover-Create-Share
The Tool Kit emerges from our collaborations with researchers, publishers, and a wide range of media
partners to develop learning games. The first elements of the framework were developed by Henry
Jenkins, Sande Scoredos, and Alex Chisholm for a workshop on “Adapting Linear Storytelling in an
Interactive Age” first held during MIT’s Independent Activities Period in January 2000. Over the past
decade, the workshop was refined and extended across other activities, including a large-scale
deployment in the State of Kentucky as part of an HP Catalyst project and a variety of “Game Design
Boot Camps” organized with FableVision. With an emphasis on iterative development, resources are
segmented into four phases:

Explore Early phase of development to establish common vocabulary around games and start

the research process
Discover Brainstorming, creative development, and early documentation
Create Paper prototype and sample art/audio asset development
Share Play tests and concept “pitch”

Within each phase, we encourage teachers to emphasize the concepts of Explore-Discover-Create-
Share as sub-cycles, reminding students to continually exercise their research and creative design
skills as they develop and test their game concept.

The workshop will walk participants through elements of the Explore and Discover phases of
development while presenting hooks to additional phases and, ultimately, technical implementation
using tools like GameSalad, GameStar Mechanic, Scratch, and GameMaker.

Game Design Tool Kit Details
The Tool Kit starts with a stack of index cards that are labeled for each phase and step of the design
process. Online videos, lesson plans, and bulletin boards developed by the Learning Games Network
and FableVision support teachers and enable them to share best practices as they integrate game
design into instruction.

468

This current version of the Tool Kit focuses exclusively on the creative concept development process.
Technical implementation of the concept (i.e., digital prototyping and game programming) will be
included in later versions of the Tool Kit.

The project-based methodology and online components are designed to support teachers who aim to
coach and collaborate with their students through the game design process.

While the Tool Kit emphasizes working with students to create learning game concepts that support
topics central to the curriculum, it can also be used for a much broader set of games.

The Tool Kit may be used as part of formal instruction as an alternative to other research, writing, and
project-based activities in middle and high school (Grades 7-12) that encourage students to explore
subjects and topics across the curriculum or as a framework to guide extra-curricular club activities.

Depending on schedule and pace, we recommend teachers consider using the Tool Kit over several
weeks (2-3 minimally) or over the course of a 10-week school quarter (recommended
implementation). This will give students an opportunity to spend timing researching, creatively
designing, testing, and iterating their work.

All resources are available online. Index card labels, available as downloadable PDFs, have been
formatted for easy printing on Avery labels. Videos can be streamed, while PDFs of lesson plans and
evaluation rubrics can be downloaded and printed for classroom or club use.

Components

A complete list of Game Design Tool Kit components follows:

(1) Video: Introduction to the Game Design Tool Kit

Guide: Getting Started

(2) Video: EXPLORE: Creativity and Play

Lesson Plan: Exploring Game Genres

(3) Video: EXPLORE: Question and Research

Lesson Plan: Sparking Playful Research

(4) Video: DISCOVER: Design It

Lesson Plan: Brainstorming with Young Designers

(5) Video: CREATE: Prototype

Lesson Plan: Getting Ready to Prototype

(6) Video: CREATE: Play Test

Lesson Plan: Preparing to Play Test

(7) Video: SHARE: Write and Pitch

Guide: Evaluating Student Work

(8) Video: SHARE: Tools for Making a Pitch

Guide: Tools Young Designers Can Use

The GLS workshop will walk participants through the You Be the Judge, Creating Sparks, and Design
It! lessons.

469

Studio K: A Game Design Curriculum for Computational Thinking

Luke Kane, Wade Berger, Gabriella Anton, University of Wisconsin-Madison, 330 N. Orchard,
Madison, WI 53705, lkane2@wisc.edu, wjberger@wisc.edu, ganton@wisc.edu

R Benjamin Shapiro, Kurt Squire, Morgridge Institute for Research, 330 N. Orchard, Madison, WI
53705, rbs@morgridgeinstitute.org, ksquire@morgridgeinstitute.org

Abstract: The Studio K curriculum is designed to engage students in habits of mind
germane to game design, as well as computational thinking. Utilizing Microsoft Kodu,
students are encouraged to reflect on their own gaming experiences to decompose
and analyze the reasons why games are fun, and then transfer those patterns to their
own games. Given the increasing demand by companies, governments, and society
for people who know how to think computationally (i.e. think critically, logically, and
solve problems in innovative ways using computational tools), in order to be
competitive in the knowledge economy (Wing, 2006; National Academy of Sciences,
2010), the Studio K curriculum uses the potential of game design to prepare youth
with skills germane to computational thinking, and the so-called STEM disciplines
whose practices heavily rest on computation (Games, 2010; Hayes and Games,
2008). This potential has been recognized by the White House’s efforts (White
House, 2009) to support educational video game design, including national game
design contests and supporting programs that teach computational thinking.

General Notes
This workshop will give participants hands-on experience with Kodu and a framework for
incorporating the curriculum into their classrooms or other learning spaces. Computers and game
controllers (optional) will be provided.

Introduction
Thirty years ago, learning to “program” was bracketed off as something specialized for uncool nerds
or computer scientists. But as digital devices become integrated into every aspect of our lives, it is
imperative that people become literate with digital technologies. This requires more than knowing how
to use an operating system or applications—or even how to program—but rather how to abstract from
situations and think algorithmically (Wing, 2006). Indeed, computational thinking is essential for
success in the modern world as the digital revolution transforms professional practices—even the
structure of entire industries—and citizens must understand some computation to participate in
modern life. People need to understand what computation can do easily and what it cannot do,
develop good intuitions about how computation operates within domains of practice (from social
software to personalized medicine applications), and use computation to reach their own goals.

In that sense, computational thinking is defined as the ability to use computation to understand new
content, synthesize it, and use it. Classic examples of computational thinking use computation to
improve students' abilities in math or science class. A broader view suggests that computational
thinking skills can help students read the paper, do their taxes, or participate in political life. The real
power of computational thinking, however, lies in that “protean” power of the computer: creation. If
understanding computation is valuable, using computation to build something personally meaningful
is quite possibly the best way to get there. Computational thinking describes an ability to answer
“What can I build to understand this problem?”.

There are several paths to acquiring those abilities, most of which involve learning to program and
learning to communicate with the logic of programming. While not everyone needs to understand the
finer points of red-black trees, almost everyone would benefit from understanding how to create and
communicate with computation. However, there is very little instruction in the US that teaches
students how to cross-apply computational thinking. Computer science is rarely taught in high
schools, and, when it is, it is taught in an disconnected way that misses the point.

Tools like Kodu can revolutionize education by building on the successes of precursors like Logo, the
programming language commonly used in education, but also by employing social gaming structures
(badges, achievements, collaborative problem solving, etc.) to deepen participation and encourage
players to become game designers (Games, 2010). Becoming a game designer means going beyond

470

technical creation to craft aesthetics, interactions, and stories that motivate users to play, and
embedding Kodu in a larger social context would allow it to help children to learn to program socially
and authentically.

In this workshop, we outline Studio K, an experimental club for teaching students Kodu, and Studio K,
a social network designed to optimize and support learning complex computational content with Kodu.
The Studio K curriculum is built on a complementary foundation of game design and computational
thinking frameworks.

Computational Thinking Framework
Computational thinking is a way of thinking and solving problems effectively using the logical,
mathematical, and representational tools that computers make available work our way through data,
and transform it into actionable information. Over the years, multiple frameworks of computational
thinking have been proposed by scholars, that emphasize different aspects of the construct from the
more abstract and logical operations necessary to construct a software algorithm, to the more social
aspects involved in solving a complex computational problem collaboratively (National Academy of
Science, 2010).

In order to operationalize the construct for this study, we rely on a framework recently proposed by
Google (2010), which synthesizes most of these perspectives according to the actual practices of
software professionals today. The framework characterizes CT according to five distinct dimensions
that encompass habits of mind and practice germane to solving problems using computational tools.
These are:

● Decomposition is the breaking down, or ability to break down, a problem into its core

components. Identifying the core components of a problem often leads to Pattern
Recognition and Generalization, which aids in Algorithm Design.

● Pattern Recognition is the ability to see or identify recurring themes. With regards to CT,
this specifically means that users/students/programmers/etc. can identify these recurring
themes outside of the problems that they encounter, which will aid them in applying these
patterns to their current problem (see: Pattern Generalization and Abstraction).

● Pattern Generalization and Abstraction is the ability to recall previously encountered
patterns and use them to aid in the solving of problems of a similar pattern. Although all of the
dimensions that Google defines here are important, abstraction is a critically important
concept in CT due to its cross-field presence and its role in the foundations of some of the
most important concepts that we as humans use. For example, not only is abstraction the
basis for algebra, but it is also the foundation for language and the way that we interpret and
organize the world around us.

● Algorithm Design is the construction of a step-by-step process that will allow the user to
solve the problem. For example, if someone were trying to navigate a maze, there may be
only one solution, in which case an algorithm can be written for the player so that when
followed, subsequent players will find the end of the maze, or the goal. It may look something
like this:

○ Turn north
○ Move 1 step
○ Turn south
○ Move 2 steps
○ Turn north
○ Move 2 steps
○ Turn west
○ Move 4 steps

Additionally, using this algorithm, one can reliably recreate this maze, albeit the maze can
take on a huge or infinite number of forms, so long as one of the solutions follows this
algorithm. And while there may exist multiple paths to a correct solution for any given
problem, some paths are also more efficient than others, which allows for this dimension to
be evaluated at increasing levels of sophistication.

● Data Analysis, Modeling, and Visualization is the process by which we consume
information and transform it into a meaningful form (input to output). A prime example of this
is the reporting of statistical trends. Many people struggle with making meaning out of long
sentences of numbers and data, so the presentations of those data are often visualized as

471

charts and graphs, and more abstractly, symbols and icons. These visualizations often carry
much more meaning to viewers/listeners/consumers, and are thus more effective ways of
communicating messages and information.

We chose these five dimensions given that they present two advantages over those presented in
other frameworks: 1) They are measurable, meaning that there are concrete and perceptible
processes and products that can be captured by systematic research either through observation or
other means. 2) They are applicable to a broad range of professions and activities involving the use of
modern computing tools, which in our view is a necessary prerequisite to differentiate computational
thinking from other forms of logical and mathematical abstract thought.

Game Design Framework
The Game Design Framework that we use for the Studio K curriculum actually consists of two
frameworks, one involves breaking down games, as a medium, into their core components, and the
other is the process by which students are allowed to bring in their own gaming experiences.

Dimensions of Games:

● Goals: Goals are the objectives of the game. They tell the player what to do, where to go,

and how to win the game. By changing the goals in the game, a game designer can change
how the players navigate and interact with the game world.

● Rules: Rules define how players may behave within a system. In games there are
consequences for breaking rules, such as lower score or the death of the player character.

● Assets: Assets are all of the physical things that make up the game world itself. The
landscape, the buildings, the power-ups, and everything else that the player can see and
interact with in the game are the assets. The design of the assets can impact the
“atmosphere” and “feel” of the game.

● Spaces: Spaces are where the game takes place. By using different types of spaces, like
tight and cramped or open and spacious, game designers can affect the kinds of experiences
players can have.

● Play Mechanics: Play Mechanics are the things that players do in games. They are action
words like “run” or “jump”. Giving access to or restricting the abilities or mechanics of players
can change the extent to which players are able to interact with the game. This has an impact
on how they are able to achieve the goals of the game, or win the game.

● Scoring Systems: Even though scores are not present in every game, they can have a large
impact on player behavior when they are present. Scores can also be goals in games.

● Narrative: The narrative of a game provides the context for the players’ actions. It can also
provide motivation for players to continue playing or quit.

Play, Fix, Create

● Play: In the first step, students play a game that highlights one of the seven above-mentioned

dimensions. The goal is for them to think about how that goal influenced their play
experience.

● Fix: The students are then presented with a similar, but broken game. Their task is to identify
what is broken in the game and then fix the problem.

● Create: The students are then allowed to create their own games, keeping in mind the
themes of the lesson (Goals, Rules, etc.). However, because starting a game from scratch
can be a daunting task, the students are given design scenarios or constraints.

By thinking of games through this framework, students are able to bring in their own gaming
experiences and translate those experiences into Kodu. In turn, students learn how to think of games
as systems, break down those systems into simpler patterns, and then reapply those patterns to new
languages and representations.

Studio K
Although only a pilot program, Studio K has thus far been successful in helping students develop
ways of thinking about game design that will allow them to transfer their own gaming experiences into

472

Kodu. This workshop will give participants a chance to walk through Kodu and the Studio K curriculum
and determine how it may fit into their own learning spaces.

References
Games, I.A. (2010). Gamestar Mechanic: Learning a designer mindset through communicational

competence with the language of games. Learning, Media and Technology, 35(1), 31-52.
Google. (2010). What is Computational Thinking? Retrieved from

http://www.google.com/edu/computational-thinking/what-is-ct.html
Hayes, E.R., & Games, I.A. (2008). Making computer games and design thinking. Games and

Culture, 3(3-4), 309-332.
National Academy of Sciences (2010). Report of a workshop on the scope and nature of

computational thinking, Washington, D.C.: National Academies Press.
Papert, S., & Harel, I. (1991). Situating constructionism. In I. Harel and S. Papert (Eds.),

Constructionism (pp. 1-12). Norwood, NJ: Ablex.
White House. (2009). President Obama launches “Educate to Innovate” campaign for excellence in

science, technology, engineering & math (STEM) education. Retrieved from the White House
website: http://www.whitehouse.gov/the-press-office/president-obama-launches-educate-
innovate-campaign-excellence-science-technology-en

Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

Acknowledgments
The authors would like to humbly thank Alex Games and Joe Booth for their support and wisdom. We
would also like to thank Oregon Middle School for allowing us to pilot this program in their school, as
well as Seann Dikkers, who helped us get set up at Oregon.

