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Abstract: In this paper, we delve into the connections between multiple methods for 
investigating game-based learning. We focus on three, connected analyses related to 
a single case (uncovering computational thinking in the play of the collaborative 
strategic board game Pandemic). We describe an approach for connecting content 
analysis, learning analytics, and d/Discourse analysis into a framework that both 
meaningfully chains quantitative and qualitative methods, as well as provides a useful 
means to generate new hypotheses for future games and learning research. 

Introduction 
In recent years, games and learning research has often focused on the important role that these 
forms of interactive media may play for understanding situated forms of learning and literacy within 
contemporary media cultures. And yet, much remains still unexplored in terms of determining 
efficacious ways to employ and synthesize multiple methodological approaches toward uncovering 
learning in complex game play environments. If a goal for this growing field is to understand how the 
play of games gives rise to learning practices, we posit that it is important to better understanding 
levels of analysis in capturing the learning present within game play. We are faced with the critical 
task of understanding the appropriate lenses by which we can investigate learning practices, as well 
as how to connect the insights learned through each. 
 
In the present study, we describe a multi-methodological approach to the understanding of learning, 
illustrating the connections between methods through the analysis a single case of game-based 
learning: the forms of computational thinking that arise during the play of Pandemic (Leacock, 2007), 
a collaborative board game. Through a multi-site study of player talk through multiple runs of the 
game, we attempt to uncover learning on multiple scales, with three major methodological 
approaches employed. In doing so, we attempt to delve into the variety of learning practices and 
activities engaged upon by participants by “triangulating learning” through the use of three 
approaches: content analysis, learning analytics, and d/Discourse analysis techniques. We 
hypothesize that a coordinated attempt to understand learning across multiple scales may reveal both 
how computational thinking is instantiated in the practices of game play as well as how we may 
usefully focus on multiple scales of analysis to investigate learning in games. 
 
In the following sections, we first describe the overall program of investigating computational thinking 
in Pandemic, then a brief description of each of these three approaches, finally discussing lessons 
learned on the applicability of these approaches for understanding computational thinking (e.g., Wing, 
2006; National Research Council, 2010). We attempt to further the goal of better connecting multiple 
methodological approaches for the explication of learning with games (be they digital or otherwise), 
while investigating what this combination of analytic techniques may tell us about understanding 
learning in play-based spaces. 

Computational Thinking in Pandemic 
Berland and Lee (2011) established Pandemic (Leacock, 2007) as an interesting and important site 
for investigating computational thinking in games. A collaborative strategic board game, Pandemic 
requires between one and four players in the basic game, all working together to rid the planet of four 
diseases concurrently ravaging the globe. Each player adopts a different role in the game, with 
different abilities but a common goal of clearing the board of the diseases (participants either achieve 
this goal collectively, or all fail). As the game is entirely collaborative, it has served as a useful site to 
capture the ways that complex problem-solving practices are embedded within an off-the-shelf 
game’s play, and are exhibited through discussion. 
 
In a series of studies conducted at two universities in 2010 and 2011, we studied how participants 
played Pandemic, focusing on the forms of computational thinking displayed in their verbal exchanges 
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while playing the game. We created new rule manipulations intended to elicit different computational 
thinking practices (including “Strategy Debugging,” “Rules Debugging,” “Simulation,” “Algorithm 
Building,” “Conditional Logic”; see Table 1 below). In each case, all talk during the game was 
recorded, broken down by turns in the game, and matched with individual participant roles within the 
game. 
 

 Site n Additional Rule Hypothesized Change in Comp Thinking 

Group 1 Texas 4 No Rule Change/ “Vanilla” Control Group 

Group 2 Texas 3 No Rule Change/ “Vanilla” Control Group 

Group 3 Texas 3 “Cheat Sheet” Increase in Strategy Debugging 

Group 4 Texas 2 “Cheat Sheet” Increase in Strategy Debugging 

Group 5 Ohio 3 “Ghost Player” Increase in Simulation 

Group 6 Ohio 2 “Ghost Player” Increase in Simulation 

Group 7 Texas 2 “Disease” Increase in Rules Debugging 

Group 8 Texas 4   “Disease” Increase in Rules Debugging 
 

Table 1: A breakdown of all eight groups. 
 
And yet, with this raw data, multiple scales of analysis presented themselves as useful for 
understanding computational thinking within this environment. In the following sections, we outline 
three approaches, connecting nomothetic (between-subjects, analyzed in the aggregate) to 
idiographic (focused on the individual) approaches, first applying content analysis coding schemes to 
understanding the prevalence of computational thinking practices. Next, building upon the content 
codes, learning analytics approaches were employed toward investigating idealized paths through the 
problem spaces of the game. Finally, from these, d/Discourse analyses are used to capture specific 
meaning-making exchanges within the gaming transcripts. In the following sections, we will trace one 
chain from content analysis to learning analytics to d/Discourse analysis from data in the ongoing 
computational thinking in Pandemic research, as a means of illustrating the connections between 
methodologies and scales of analysis. For details on the specifics of computational thinking within 
collaborative board games, we suggest the reader reference Berland and Lee (2011) or Berland and 
Duncan (2012)—for the purposes of this paper, the emphasis will be on methodological concerns and 
ways to connect multiple scales of analysis. 

Content Analysis 
As detailed in Berland and Lee (2011) and in Berland and Duncan (2012), an early inclination with 
studying computational thinking in this domain is to first characterize the prevalence of computational 
thinking in game play, as assessed using an a priori coding scheme (a la Steinkuehler & Duncan’s, 
2009, assessment of informal scientific thinking in online gaming spaces). With this approach, the 
prevalence of each hypothesized code was determined, as well as the differences between each 
experimental condition (different rule manipulation, as in “Vanilla” or “Cheat Sheet”). A set of four 
coders iterated a computational thinking coding scheme, coding 366 player-turns (6870 individual 
utterances), and achieving an inter-rater agreement of over 95% on this coding scheme. Please see 
Figure 1 below for a simplified breakdown of the results from this stage of analysis. 
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Figure 1: Content analysis code saturation by condition. 
 
As can be seen in this graph, analyses of this sort are necessarily conducted in the aggregate—
participant talk is coded by turn, tallied for each of the codes, and then assessed both graphically as 
well as for statistical regularities (see Berland and Duncan, 2012, for detailed analyses beyond the 
scope of this paper). In sum, the approach laid out here is nomothetic in nature—aimed at addressing 
the overall prevalence of computational thinking practices, and assessing the influence of 
modifications to the game in a between-subjects manner.  
 
How might we use these data and analyses, then, to help us move past a scale of analysis that 
characterizes the collection of design talk in the aggregate, while valuing the lessons learned from this 
level of analysis? In the next section, we outline an approach that builds upon the content analysis to 
provide a hypothesized idealized path through the problem space of the game. 

Learning Analytics 
One useful approach is to focus on “learning analytics,” or hypothesized, idealized path based upon 
the data gleaned for the content analysis scale of analysis. If the first stage is to identify regularities 
and patterns in the entire corpus of talk present within the game, the next is to develop generalized 
insights that help us to understand not all of the activities present within the play of Pandemic, but 
instead a “distilled” set of these computational thinking practices, connected into a path of activities. 
 
To determine a trace (as per Berland, Martin, Benton, Ko, & Smith, submitted), we found the most 
likely transitions between "types" of logic. This is an exploratory measure designed to further highlight 
relationships between these data. In this case, we were interested in an ordering of the computational 
thinking codes in the data. To determine the ordering, we collected all of the instances in which a turn 
showing a particular code (say, Algorithmic Thinking) followed another turn with a different code (say, 
Conditional Logic); this is called a (first-order) transition. A second-order transition would find all of the 
instances in which one code followed another code then followed another code. We computed the 
complete set of first- and second-order transitions for our dataset and solved for the highest likelihood 
ordering of transitions (1). This method allows us to see broader-scale relationships across our 
dataset so as to identify patterns to investigate more thoroughly at the discourse level. Below, in 
Figure 2, we present the elements of a trace focused on “Strategy Debugging.” 
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Figure 2: A learning “trace” abstracted from learning analytics methods. 
 
In the Pandemic work, we first identified the prevalence of these computational thinking practices, 
then employed a second-order, computational method for tying these codes to one another. By 
creating a hypothesized chain computational thinking practices (of Algorithm Building → Rules 
Debugging → Strategy Debugging), we argue that learning analytics provide a useful “glue” between 
nomothetic and idiographic approaches, serving as to filter insights developed from content coding to 
further justify the selection of data to qualitatively analyze using d/Discourse analysis methods. 

d/Discourse Analysis 
Using the Algorithm Building → Rules Debugging → Strategy Debugging chain, we can now apply 
conclusions drawn from Learning Analytics toward the selection of data for qualitative analysis. As 
Duncan (2011) argued, d/Discourse analysis methods—including Gee’s (2010) “big-d Discourse 
analysis”—suffers from the problem of how one justifies the selection of data to analyze. That is, if it is 
important to connect insights gained from idiographic methods to other means of understanding 
game-based learning (and scales of analysis), then determining principled ways of selecting the data 
for such analyses becomes a critical task. 
 
In the case of computational thinking in Pandemic, we can take what’s learned through the Learning 
Analytics approaches to find an exchange of interest. In this specific case, it means following the 
chain from content analysis (determining the prevalence of computational thinking codes) to learning 
analytics (determining an idealized path through the problem space of the game) through to a case of 
the talk between participants that fits the idealized path. While typicality is clearly not the only means 
of justifying the selection of data for d/Discourse analyses, the chain of previous analyses leads the 
researcher to investigate how meaning is made and negotiation occurs in the course of some of the 
most common moments in the play of game. 
 
Take, for example, an Algorithm Building → Rules Debugging → Strategy Debugging chain found in 
the Pandemic data: turns 9 through 11 of Group 6 (see Table 1, above). In this case, the game was 
taking a turn for the worse—two players (“White” and “Red”) had misunderstood an earlier rule that 
was now beginning to impact their game, and in turn 10, in particular, they attempted to debug the 
rules that were clearly beginning to malfunction (and impair their progress). A selection from Group 6, 
turn 10, is replicated below, focusing specifically on terminology used to flag individual actions (in 
italics; emphasis ours) with group strategies/actions (in bold) and actions of a “Ghost Player” 
controlled by both other players (underlined): 
 

1 - White: “Okay, my turn. I'll take out Cairo first, since we just drew that card, 1,2,3 - so three 
turns. Should we take out all 4 in Cairo, why not? We don't have anything else to do.” 
2 - Red: “Yeah.” 
3 - White: (reading card) “‘Research station..’ Oh wait, where should we add it? Here? No, it 
doesn't matter...” 
4 - Red: “Okay, here.” 
5 - White: “... then draw 2 of these...” 
6 - Red: “…alright.” (moves game tokens and cards) 
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7 - White: “Okay, take 1, 2, 3, cure disease - in order to cure disease you play 4 cards and now 
(reads cards & moves cards) St. Petersburg, add 3 cubes to any city, which one is it? Wait a sec - 
if the epidemic causes… but we have the cure for it, don't we?” (grabs instruction book) 
8 - Red: “Doesn't it mean...” (looks to instruction book) “Let's just go over the cure...” 
9 - White: “I don't know...” (reads from instruction book) “... if your pawn, discovered cures...” 
10 - Red: “Oh, okay, we've eradicated it.” 
11 - White: (reading from book) “…cards of this color… okay, it doesn't matter, so screw the blue 
card.” 
12 - Red: “Even though we are in epidemic?” 
13 - White: “Yeah, that was on there, I think that's all it means is, it's on the (points to board) 
14 - Red: “Okay, yeah, alright...” 
15 - White: “Is it your turn?” 
16 - Red: “You just went?” 
17 - White: “He just went, we eliminated this disease now.” 
18 - Red: “Yeah.” 
19 - White: “So, we're done with blue...” 
20 - Red: “I say - um - I mean it's your -” 
21 - White: “Your turn, it's 6 cards now, we can't toss 7.” 

 
In this exchange, we see an interesting balancing between three individual (two real player, one 
Ghost Player) and collective actions, while also attempting to unpack the cause of a malfunctioning 
rule (coded as “Rule Debugging”). In this case, the interesting mixture of individual and collective 
goals gives way to a set of collective, collaborative goals, before finally turning into confusion as 
players try to remember whose turn it is next. 
 
We can drill down past the aggregate or even hypothesized traces through the content codes, and 
investigate the specific exchanges that may serve as foundational for potential further studies. In this 
case, a cursory examination yields an interesting interplay between participants over strategies—
White first lays out a strategy for both him and Red to enact (utterances in lines 1-7). Next, as 
confusion arises over the game’s rules (end of line 7), both players refer to the game’s instructions in 
order to clarify it, and, most interestingly (lines 15-21) end the turn with confusion over their individual 
roles in the game (“Is it your turn?” in line 15, and “I say - um - I mean it’s your -” in line 20). Thus, a 
new hypothesis emerges—a focus on Rules Debugging may be correlated with a focus on the 
collaborative goals, and thus confusion regarding individual strategies and responsibilities. 
 
By “drilling down” from the content analysis to the learning analytics and then to a d/Discourse 
analysis level, the framework outlined here both fleshes out exchanges that may not have been 
adequately capturable with a nomothetic approach such as content analysis, and provides future 
avenues for investigation into the nature of collaborative problem-solving and computational thinking. 

Multiple Scales of Game-Based Learning 
As we have argued through this brief example, much can be learned through the exploration of 
multiple methods, and the principled connection of methods toward the investigation of different levels 
of complex learning practices in games. In Figure 3 below, we can lay out a general framework for 
connecting these three methods, as well as identifying the forms of data that are applicable to each 
method, as well as the kinds of claims/uses of each scale of analysis. 
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Figure 3: A general framework for connecting methods and scales of analysis. 
 
Though at this point this is a provisional framework, it does lead us to suggest that there is utility in 
specifying the ways that different methodologies connect to provide a better understanding of the 
different levels of complex reasoning that occur in game-based learning. In the case of Pandemic, we 
can develop a characterization of the aggregate activity through the use of content analytic 
approaches, while using learning analytics methods in a more-or-less instrumental fashion, to clarify 
ideal paths through the problem space of the game and to justify the selection of data for d/Discourse 
analyses. Connecting the nomothetic and idiographic approaches in this fashion allows the research 
to address both the typicality of a particular kind of learning practice, as well as raising new questions 
about the phenomena under study often best uncovered through a careful read of individual 
exchanges. 
 
In general, developing principled ways of connecting multiple levels of analysis and employing 
multiple methods can help us to (1) justify the selection of data used in qualitative methods used to 
uncover learning and literacy in game spaces; and (2) give us cause to investigate the ways that 
complex problem-solving and learning may instantiate in very different ways at different levels of 
analysis. In game-based learning in particular, there is an increasing call for researchers to 
quantitatively justify claims about the productive potential of these media, while at the same time, 
many of the most intriguing learning practices are best uncovered through qualitative analysis. We 
argue that formally connecting the quantitative and qualitative may help to address both the need for 
“harder” data to substantiate claims of game-based learning, while also addressing the socially- and 
culturally-situated forms of learning that are part and parcel of engaged gaming talk. 

Endnotes 
(1)  While this trace is generated from the Markov chains, it is not itself a Markov chain (for more detail, see 

Berland, Martin, Benton, Ko, & Smith, submitted). 
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Abstract: While problem solving is lauded as a benefit of video games, little empirical 
evidence exists to support this assertion. Current definitions and taxonomies are 
often contradictory and do not capture the complexity and diversity of modern games. 
Many video game researchers are also unfamiliar with the 75+ years of problem 
solving research in Europe and the United States. We propose a classification of 
gameplay that accounts for the cognitive skills during gameplay, relying in part on 
Mark Wolf's concept of grids of interactivity. We then describe eleven problem types 
and the dimensions along which they vary. Finally, we use the shared dimensions of 
gameplay and problem types to align gameplay types and problems. We believe that 
this framework for thinking about games and problem solving can guide future design 
and research and design on problem solving and games. 

 
Statement of the Problem  
Many have argued that games address critical thinking and problem-solving skills (e.g., Gee, 2007; 
Greenfield, 2010; Van Eck, 2006 & 2007). Unfortunately, what research exists on this tends toward 
the descriptive rather than the empirical. Descriptive analysis can illustrate how some kind of problem-
solving process is occurring within a game (e.g., scientific method), but it cannot tell us about the kind 
of problems, how often they occur, for how long, and, most importantly, how effective a given game is 
at promoting problem solving skills. 
 
Unfortunately, we are not prepared to conduct the kind of research that will answer these questions. 
Current game taxonomies are inconsistent and often contradictory, having their origins in film studies 
and relying on common parlance. Conducting empirical research on problem solving and games will 
require that we be able to manipulate and control for different types of games so that we can examine 
what kinds of games promote problem solving better than others. At the same time, we recognize that 
games that share the same genre can be very different experiences and that some games cross 
genre boundaries (e.g., action-adventure). Even were this not the case, any given game is likely to 
vary in terms of pace of play, amount of interactivity required, number of problems presented, and so 
forth. These are differences that must somehow be accounted for if we are to examine how any given 
game impacts problem solving. 
 
This challenge is compounded by a lack of awareness on the part of most serious games researchers 
regarding existing problem types and problem-solving research. We require the same level of 
precision in our treatment of problem solving as we do in our definition of game typologies. To design 
a game to promote problem solving, we must know what kind of problem we are interested in: 
creating a menu for guests who have different diet restrictions, troubleshooting a car that won't start, 
diagnosing a patient’s back pain problem, or solving global warming? Each type of problem differs 
significantly in structuredness, requirements for prior knowledge, ability to embed other subproblems, 
and cognitive structure, and therefore require different means of instruction (or game design). 
 
Fortunately, cognitive psychology and instructional design have been studying problem solving for 
many years, and a rich body of research exists which can help inform our studies and design of 
problem solving in games. In this chapter, we attempt to bridge theory and practice by examining the 
relationships between games, problems, their cognitive processes, and instructional design. 

Problem Solving 
It is generally accepted in cognitive psychology that a problem has an initial state and a goal state. 
The initial state is the set of information and resources present at the beginning of the problem. The 
goal state is the information and resources that will be present when the goal has been met. The 
problem solver uses a representation of that goal state when considering how to proceed, which 
usually takes the form of doing things to reduce the disparity between the initial state and the goal 
state. The strategies s/he uses and the process by which s/he thinks about moving toward the goal 
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state within the constraints of the problem and his/her prior knowledge are collectively referred to as 
the problem space. Most recently, Jonassen (2000, 2002) and Jonassen and Hung (2006, 2008) have 
proposed a typology of problems and associated prescriptions for the design of problem-based 
learning and instruction to promote problem solving in general. If games themselves are examples of 
problem solving, they should share to the same kinds of characteristics as different problems have. A 
closer inspection of this literature to see if and how it can be mapped to the study and design of 
serious games may yield important findings.  

Games and Problem Solving 
Jim Gee (2007) has argued that all games are situated, complex problem solving, and others have 
made the same point (e.g., Kiili, 2007). The core of our argument is that problems are highly 
differentiated by context, purpose, and domain, that different types of gameplay have their own 
affordances, and that it is necessary to understand problem types and gameplay types in order to 
align them meaningfully in the design of games to promote problem solving, or to conduct research on 
the effects of gameplay on problem-solving skills. There are three dimensions upon which a problem 
itself may vary: structuredness, cognitive components, and domain knowledge. Space does not allow 
a full accounting these dimensions, and the reader is referred to our work on this elsewhere (Hung & 
Van Eck, 2010). Likewise, we rely on an in-depth analysis of gameplay types, which we are able only 
to touch upon here, and the reader is referred to the aforementioned chapter for full accounting of 
gameplay types and interactivity. 

Problem Structuredness 
Jonassen (1997) argues that structuredness describes the reliability of the problem space in terms of 
the ratio of the information about the problem known and unknown, the number of variables, the 
number of possible solutions, and the degree of ambiguity involved in being able to assess one's 
success in solving the problem. Video games (or, more precisely, the gameplay that makes up 
different video games) also vary on a continuum from highly structured to poorly structured, so 
structuredness becomes one dimension upon which we can categorize both games and problems. 

Cognitive Processes in Problem Solving 
Solving different problems also relies on different kinds of cognition. There are six main cognitive 
processes relevant to problem solving as we discuss it: Logical thinking (the mental process that 
infers an expected event as a result of the occurrence of its preceding event or evaluates the validity 
of the conditional relations of these events); analytic thinking (identifying and separating an object, 
essay, substance, or system into its constituent components, examining their relationships as well as 
understanding the nature, behaviors, and specific functions of each component); strategic thinking (an 
integration process of synthesizing and evaluating the analytical results of a given situation and 
generating the most viable plan with intuition and creativity); analogical reasoning (the mental process 
by which an individual “reason[s] and learn[s] about a new situation (the target analogue) by relating it 
to a more familiar situation (the source analogy) that can be viewed as structurally parallel” (Holyoak 
& Thagard, 1997); systems thinking (the cognitive reasoning processes that consider complex, 
dynamic, contextual, and interdependent relationships among constituent parts, and the emerging 
properties of a system, (Capra, 2007; Ossimitz, 2000); and metacognitive thinking (the cognitive 
process that an individual is consciously aware of and which he or she articulates to various aspects 
of his or her own thinking processes). Different problems and different kinds of gameplay will support 
these types of thinking in different ways. Therefore, they become important for understanding how 
gameplay and problem solving can be aligned. 

Classifying Gameplay Types using iGrids 
The variance of problems along dimensions of structuredness and cognitive processes presents one 
challenge to the research and development of games for promoting problems solving. Yet games 
themselves vary greatly as well, as can be seen in classification systems (e.g., Apperley, 2006; 
Frasca, 2003). And because no one classification system is widely accepted nor completely 
compatible, our task is made even more difficult. Games often employ multiple gameplay strategies 
from different genres within the same game, leading to hybridized descriptions like action-adventure 
that work against meaningful classification. So how are we to distinguish among games (or types of 
gameplay) in a way that makes possible the empirical research and design of games to promote 
problem solving? While serious game researchers may not agree on different game genre 
classifications, most might agree that interactivity is one of the hallmarks of video games. This 
provides one means of classifying gameplay in a way that crosses all game types: 



98 
 

The smallest unit of interactivity is the choice. . . . Choices are made in time, which 
gives us a two-dimensional grid of interactivity that can be drawn for any game. First, 
in the horizontal direction, we have the number of simultaneous (parallel) options that 
constitute the choice that a player is confronted with at any given moment. Second, 
in the vertical direction, we have the number of sequential (serial) choices made by a 
player over time until the end of the game (Wolf, 2006). 

 
Wolf (2006) calls this a Grid of Interactivity, and we refer to them as iGrids. Frequency of choice and 
number of choices make good initial measures of pace, complexity, and cognitive load, and we 
believe these constructs impact problem solving and problem typology differentially. Wolf points out 
that it is not possible to map an entire game space on a graph, nor do we mean to suggest they 
otherwise. Nonetheless, such plots remain a useful tool for conceptualizing the issue of interactivity 
and one which we can rely on as a first step to further defining the kinds of gameplay that differentially 
support different problem types. 
 
Although genre-based taxonomies of games are problematic, for now we will refer to genre-based 
terminology for the purposes of illustration. To understand an iGrid, imagine Aristotelian archetypes of 
different game genres such as “action” and “simulation” (see Figure 1). 
 

 
e.g., Left 4 Dead (Valve, 2008)     e.g., Civilization Series Games 

 
Figure 1: iGrids for two different gameplay types. 

 
The x-axis represents parallel interactivity, which is the number of choice options a player has at a 
given point in time (called a choice nexus), while the y-axis represents how often the player is 
presented with a choice nexus. For example, the game represented by the iGrid on the left of Figure 1 
forces the player to make choices frequently over the course of the game with little time between 
choices but presents few options to choose from at those points. In the iGrid on the right, we see a 
game that presents many options to choose from but which forces the player to make choices fewer 
times over the course of the game with long periods of time between choices. Of course, there are 
action games with more parallel choices (e.g., weapons, running vs. hiding, inventory, armor, etc.) 
and periods of gameplay with lower choice nexus frequency. Likewise, games like those in the 
Civilization series allow near-continuous serial opportunities for interaction, but they do not require it. 
 
iGrids, as measures of gameplay, become useful tools for discussing the differences in games that 
are likely to impact learning. While not sufficient on their own to fully delineate different types of 
gameplay, they at least provide an additional point of reference for communicating what is meant by 
whatever labels we use to describe games (e.g., action or strategy). Further, and most importantly, 
they allow us to describe gameplay, which after all can vary dramatically over the course of a single 
game. It will be important to be able to describe the key characteristics of gameplay in our quest to 
measure the ability of different types of gameplay to promote different types of problem solving. 
 
By combining iGrids with an analysis of game/gameplay types using the same dimensions and 
characteristics that are used to differentiate problem types, we are able to develop a framework for 
describing games/gameplay that makes further study possible. In our discussion, we will rely on 
terminology regarding gameplay, which we have fully articulated elsewhere (Hung & Van Eck, 2010). 
Rather than generate new terminology and labels for the resulting taxonomy, we rely on existing 
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taxonomies (e.g., Apperley, 2006) with some modifications. The resulting classifications are in some 
cases significantly different than common parlance, however. For example, Frasca’s (2003) 
classification would list SimCity and Flight Simulator as simulations, whereas our analysis of 
gameplay suggests that SimCity is a strategy game (optimizing a system by strategically balancing 
factors) and Flight Simulator is a simulation game (a test of coordination of perception, cognition, and 
muscular control). Likewise, Apperley’s classification would put FIFA Soccer and SimCity together as 
simulations, whereas we maintain that by virtue of gameplay and cognitive characteristics, FIFA 
Soccer is an action game. Space does not allow a full accounting of game play types (Action, 
Strategy, Simulation, Adventure, Role-Playing, and Puzzles), but Figure 2 presents the iGrids for each 
type. It should be noted that our categories are not intended to represent entire games as products; 
any given game will embed a variety of these different gameplay types as the situation warrants. But 
by focusing on the essential characteristics of gameplay at any given moment, we can make better 
determinations about what kinds of learning activities may or may not be best supported at a given 
time. The full analysis of by which we arrive at these different gameplay types can be seen in our 
previous work (Hung & Van Eck). 
 

 
 Strategy Adventure Role-Playing 
 

 
Puzzles 

 
Figure 2: iGrids for five other gameplay types. 

Problem Typology 
Now that we have outlined our gameplay typology, we turn out attention to problems themselves. 
Jonassen (2000) has constructed a comprehensive typology consisting of 11 types of problems: 
● Logical problem  
● Algorithm problem 
● Story problem 
● Rule-use problem 
● Decision-making problem 
● Troubleshooting problem 
● Diagnosis-solution problem 
● Strategic performance problem 
● Case analysis problem 
● Design problem 
● Dilemma problem 

 
Space does not allow for a full accounting of all these problem types and examples. The reader is 
referred to Jonassen’s text referenced above, as well as our previous work (Hung & Van Eck, 2010). 
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Suffice it to say that each of these problem types varies along key dimensions of cognitive 
composition (e.g., types of reasoning), structuredness, and requirements for domain-specific 
knowledge.  
 
Blending these dimensions with iGrids and our analysis of gameplay types, including game-specific 
dimensions like psychomotor skills and the affective domain, it becomes possible to align problem-
types and gameplay types along the dimensions that both share, and thus propose a framework for 
which kinds of gameplay types will support which kinds of problems, best (see Figure 3). 
 

 
1 For Psychomotor Skills and Attitude Change: domain-specific procedural and 
principle knowledge and metacognitive thinking are assumed. 
2 For the learning type under Domain Knowledge, application of the knowledge is 
also assumed in this chart.  
+  signifies “always required.” 
~  signifies “sometimes required.” 

 
Figure 3: Framework for aligning problem and gameplay types. 

 
This allows for both the design of games to promote specific kinds of problem solving and for the 
design of research to test the effects of varying specific kinds of gameplay on different kinds of 
problem solving. We can then also examine things like varying pace of play, frequency of problem 
solving, length of play over days, and other variables to establish heuristic design models and an 
empirical research base on problem solving and games. Knowing about different problem types 
allows us to see existing games in a new light. For example, dilemma problems can be seen in 
persuasive games such as Darfur is Dying (mtvU, 2009). But more importantly, knowing how those 
problem types themselves vary along the dimensions of domain-specific knowledge and required 
cognitive processes shows us that what superficially may appear to be similar games are in fact quite 
different in terms of their ability to support problem solving. For example, many might say that 
September 12 (Newsgaming.com, 2003) and Darfur is Dying are both dilemma games, when in fact 
September 12 is too well structured and stripped of context to fully support dilemma problems.  
 
Relying on iGrid typologies of gameplay rather than on genre classifications similarly promotes more 
precise analyses of games and problem solving. By focusing on archetypal gameplay styles, we can 
see how strategy and role-playing games seem best suited for dilemma problems, for example. 
Further, we are able to apply this reasoning to hybridized games that might at first glance appear to 
not support different kinds of problem solving. Space does not allow a full accounting of every 
problem type and every gameplay type (iGrid), nor how they each are aligned but this general 
description and the following example may suffice to illustrate the logic behind blending problem and 
game typologies.  
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Extending our example of the dilemma problem, the game Bioshock (2K, 2007), which many might 
categorize as adventure-action hybrid, is in fact a hybridization of action, adventure, and strategy. The 
game Bioshock pits the player against a variety of challenges in an underwater city named Rapture. 
As with Left 4 Dead (Valve, 2008), the player must make their way through the city without being 
killed by Big Daddies (giant modified humans in diving suits) and demented humans while collecting 
weapons and resources. Among these resources are plasmids, which grant special powers by virtue 
of genetic modifications, and which are injected via syringes. They key to unlocking the powers of 
plasmids lies in the collection of ADAM, which can only be obtained in the game from Little Sisters, 
who appear to be preadolescent girls. Little Sisters are always accompanied by Big Daddies, who 
must be killed before the player can collect ADAM. The dilemma problem in the game occurs with the 
decision on how to harvest the ADAM. One way results in the death of the Little Sister but results in a 
large amount of ADAM. The other way saves the Little Sister but results in less ADAM. While this 
choice seems to be pretty simple (two choices) the choices have a significant impact on the difficulty 
of the game and the way it proceeds. Additionally, whereas the binary choice in September 12 
(Newsgaming.com, 2003) is limited to the same instances and has the same results easily seen in a 
short period of time, in Bioshock these choices are distributed over the course of up to 50 hours of 
gameplay with relatively high frequency (medium serial interactivity), and the effects of these choices 
are not fully realized until near the end of the game. Thus, it is possible to support dilemma problem 
solving across the full arc of a game which itself is interspersed with other gameplay types, which in 
their own right may support other kinds of problem solving. 
 
Finally, while our purpose is to outline a mechanism by which problem types with their associated 
cognitive requirements can be matched to different styles of gameplay, the end result also provides 
significant guidance for design and development of the games themselves. Because the study of 
problem solving within education and instructional design has been going on for decades, a rich body 
of research and best practices exists for supporting problem solving. Knowing, for example, that a 
problem is highly structured implies that less support should be provided for its solution, while ill-
structured problems will require addition scaffolding and strategies to avoid cognitive overload. On the 
other hand, well-structured problems that occur during games with hybridized gameplay styles may 
indicate the need for more support than otherwise. When the problem solving itself is driving the 
game design, we may deliberately modify the form and frequency of a different gameplay styles in 
order to better support the problem (once we have conducted the empirical research to know how to 
promote different problem types, that is!). Knowing the kinds of cognitive processes involved also may 
help guide our selection of in-game tools, story structure, and objectives as well.  
 
If we are to build games that promote problem solving, we must build on existing problem solving 
research. If we are to make claims about problem solving and games, we must generate new 
research and design heuristics based on the alignment of problem solving and different gameplay 
types, and test those empirically. In this paper, we have outlined a way to begin to meet both of these 
challenges. We used Jonassen’s typology of problem types to help analyze the cognitive processes 
involved in different types of gameplay and, in turn, dissected gameplay that brought the essential 
characteristics (for problem solving, at any rate) to light. With an understanding of the cognitive, 
physical, and domain knowledge requirements of each type of gameplay, instructional designers and 
game developers will have a better idea of what types of gameplay will most appropriately afford 
given problem-solving learning goals and objectives. 
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