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Introduction

Educational researchers have been dabbling with interactive media that allow learners and users to explore ed-
ucational content through various theoretical approaches, including digital (virtual) immersion, (serious) games, 
simulations, situated learning, embodied cognition, multimedia learning based in cognitive theory, etc. (Annetta & 
Bronack, 2011; Dede, 2009; Mayer & Moreno, 1998). Particularly, in immersive digital gaming environments, the 
user’s experience depends vastly on whether she or he believes that (s)he is fully immersed in the environment 
using (all or some of) her/his senses. “The more a virtual immersive experience is based on design strategies that 
combine actional, symbolic, and sensory factors, the greater the participant’s suspension of disbelief that she or 
he is ‘inside’ a digitally enhanced setting” (Dede, 2009, p. 66). New interfaces, such as Brain Computer Interfaces 
(BCIs) particularly focus on the actional and sensory factors, specifically the user’s neural activity that is triggered 
while performing a cognitively demanding task such as playing a game. Ko, Bae, Oh and Ryu (2009) and Nijholt, 
Bos and Reuderink (2009) suggested several ways to use BCI for game designs; generally concentrating on its 
use as a controlling interface and feedback mechanism based on EEG signals. The present exploratory study 
used the Emotiv EPOC neuroheadset to investigate the affordances of using BCI as a game controller and its 
potential effect on learning and positive player experiences with a view to providing implications for designing 
educational games.

Brain Computer Interfaces (BCIs)

BCIs are devices designed to detect neural activities, particularly the ongoing electroencephalogram (EEG) sig-
nals, of a brain in a non-invasive way that offers “an alternative communication and control channel that does 
not depend on the brain’s normal output pathway of periphery nerves and muscles” (Millan, 2003, p. 75). BCIs 
can translate those neural activities into operative control signals (Leeb et al., 2007; Allison, Wolpaw & Wolpaw, 
2007) that can be recognized by a computer for interpretation. BCIs have predominantly been used in the physical 
rehabilitation and medical fields, but are now being researched in other areas, including education. Education re-
searchers may be interested in the possibility of BCIs in learning contexts as off-the-shelf wireless EEG headsets 
become more available for public consumption, and as many move away from interfaces that require touch or 
clicks to explore motion and sensor-controlled interfaces. In game development, input obtained from the measure-
ment of brain activity through electroencephalography (EEG) headsets such as OCZ’s Neural Impulse Actuator 
(NIH), NeuroSky’s Mind Set and Emotiv’s EPOC neuroheadset are attracting attention.

BCIs and Games

Some studies have shown that simple error detection triggers relatively fixed EEG patterns in a certain brain re-
gion. Other studies have taken such research one step further and shown that imagined movements trigger the 
same cortical areas in the brain as in the areas when such movements are executed in real life (Arzy, Thut, Mohr, 
Michel & Blanke, 2006; Astafiev, Stanley, Shulman & Corbetta, 2004). These are important findings because BCIs 
require that users control movement of game objects with their thoughts, not their body. In addition, regarding hu-
man-computer interaction, there is a lack of research on communication, user experience and user sense of con-
trol from a healthy person’s brain to a computer in a game-based environment (Müller, Krauledat, Dornhege, Curio 
& Blankertz, 2004). BCIs are not a replacement for other modalities (e.g. physical movement), but can be used as 
one of multiple input modalities (Ko et al., 2009), although application and research is still rare in this area. While 
BCIs potentially afford richer game experiences, they bring challenges as well. Users are less likely to be able to 
control a BCI environment because it is difficult to concentrate on a consistent thought and maintain it through the 
course of use (Guger et al., 2009). Lack of full and seamless control may prevent users from enjoying game play 
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and pose bigger threats to learning in the case of educational games. However, Middendorf (2000) has shown that 
with practice users can become fluent in controlling their brainwave signals. 

Sense of Control 

Although sense of control has different constructs in the literature (see Stipek & Weisz, 1981 for a review), it gener-
ally promotes motivation (Boggiano et al., 1988) and self-efficacy (Schunk & Pajares, 2009) in academic settings. 
Likewise, providing sense of control over an activity is an important design consideration for intrinsically motivating 
instructional programs (Lepper, 1988) and is widely applied to the designs for effective Computer Assisted Instruc-
tions (CAI). In CAIs, research that examined the effect of control over the instructional programs on achievement 
revealed mixed results; however, research yielded consistently positive influence of the sense of control on user 
reactions (Hannafin & Sullivan, 1995). Needless to say, control has been identified as one of essential character-
istics of games (e.g., Cordova & Lepper, 1985; Gee 2003). Therefore, this study also has relevance to questions 
about whether or not players’ sense of control moderates the impact of a BCI on learning. 

Rationale for Current Study 

Incidental Learning in Games
Some studies (Filipczak 1997; Griffiths and Davies, 2002; Gee, 2003) have shown that online adventure games 
(i.e., MUDs) and fantasy role-playing games can provide opportunities for experiential learning, as these games 
are innately social and therefore support social and situated learning. These different types of learning occur either 
incidentally or intentionally through playing a game in different ways to become a better gamer (Dempsey et al., 
1996). This is one of the reasons why educational game designers should consider incorporating an incidental 
learning strategy to an intentional learning task within a game (Mitchell & Savill-Smith, 2004). Prensky (2001) 
refers to incidental learning in games as “stealth learning” because the gamers would be learning the embedded 
content material “by accident” without realizing that learning is occurring (Oblinger, 2004). 

Different Interfaces for Learning
Several studies reported that different interfaces in educational software lead to different learning outcomes. For 
instance, Han and Black (2012) showed that the use of a haptic interface was more effective than a non-haptic 
one in learning a physics concept from a computer simulation. Paek (2012) also reported better learning outcomes 
from a touch interface than from a mouse interface in mathematical learning. Most recently, education researchers 
have become highly interested in exploring the potential of BCI devices such as the Emotiv headset to see if they 
can offer a better understanding of the relationship between learning and cognitive activities (Goldberg, Sottilare, 
Brawner and Holden, 2011; Wehbe et al., 2013). Our particular interest in the current study is the device’s potential 
to harness the overt thinking and concentration required to move on-screen objects and how this may promote 
vocabulary learning, i.e., learning abstract rune-like symbols and their association with English words. 

Research Questions 
The present study addresses the following overarching question: Does the use of the Emotiv BCI headset while 
playing a game promote incidental learning? This general question was addressed by evaluating the incidental 
learning of English word meanings for previously unknown, abstract symbols, and through a set of more specific 
questions, noted below.

1.When compared with the control group, does the use of the Emotiv BCI headset while playing a 
game result in better learning of English word meanings for unknown, abstract symbols?

(i) Within the Emotiv BCI headset group, do those who believe they are in actual control 
of the game learn more English word meanings for unknown abstract symbols than those 
who do not believe they are in actual control?

2.When compared with a control group, did the Emotiv BCI headset group report more fun?
3.When compared with a control group, did the Emotiv BCI headset group report more engage-
ment?

We hypothesized that the use of the BCI will be positively related to learning outcomes, the users’ perceptions of 
fun, control and engagement, and that the sense of fun, control and engagement will be an important factor pre-
dicting any learning gains.



237

 Methods 

Participants and Design
Participants were recruited through fl iers on public billboards at a large-sized East Coast University. Volunteers 
who responded to the fl iers for the fi rst several months of the study were assigned to the Emotiv headset treatment 
group (TG). At the end of a cut-off period 72 people had participated in the TG. Volunteers who came to partici-
pate after this time were assigned to the control group (CG). At the end of the next cut-off period, there were 68 
volunteers who had participated in the CG activity. On data analysis, it became evident that some CG data were 
not captured adequately, which resulted in a loss of 12 CG participants, yielding a CG of 56. Thus, 128 participants 
(TG n=72 and CG n=56) completed the study. In the TG, participants used the Emotiv headset to move objects in 
the game they were playing. In the CG, without the headset participants were asked to watch an animation of the 
same movement. There were two subgroups within the TG, those who reported that they believed they had full 
control over the gameplay and those who believed they did not.

Stimuli: The game and computer activity used in this study were designed by researchers to measure learning 
outcomes and user experience. The goal of the game was to have participants learn eight randomly presented, 
unknown symbols and their assigned English meanings. 

Self-Report Questionnaires: To assess participants’ gameplay and computer activity experience, quantitative data 
were collected during the game/activity. Three feedback questions on a fi ve-point Likert scale were given in each 
of four rounds of gameplay on fun, engagement and sense of control. 

Post-Interviews/Surveys: After participants completed the post-test, a semi-structured interview was conducted 
with the TG while the CG fi lled out an online post-survey of similar questions. Both groups were asked about the 
strategies used in the game/activity to memorize the symbols.  

Data Analysis: Independent samples t-tests were conducted to test differences between Control and Treatment 
group on post-test accuracy. RM-MANOVAs were used to measure the possible change in players’ game experi-
ence (i.e., perceived control, engagement and fun) over four rounds.  

                    Figure 1: A Snapshot from the Game.                     Figure 2: Feedback Screen.

Procedure

Participants were provided with an informed consent document upon arrival in the university’s game lab. After each 
participant signed the document, the procedure was explained, and the participants from both TG and CG were 
asked to complete the pre-survey about their demographic information and their past experiences with computer 
games and game controllers. 

The TG used the Emotiv headset to control the game. The headset was fi rst calibrated to fi t each participant to en-
sure that the EEG data were transmitted and recorded. Then, the participants were given a “Relaxation” task. They 
were asked to close their eyes for 90 seconds and quiet their minds and center themselves. Then they had a 7-10 
minute training session on using the headset to control an onscreen activity: they practiced concentrating on a spe-
cifi c motion, which is moving a virtual object to the right. The next task was called “Persistence” (the participants 
were not told explicitly that they were being assessed for task persistence measurement). Participants were asked 
to look at two pictures that are similar but not identical and identify four differences (when in fact there were only 
three) using a computer mouse. The activity was timed for 15 seconds in each round and the participants could 
retry and repeat the round up to ten times. After the Persistence task, the participants proceeded to the Relaxation 
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task for the second time in order to quiet their minds before continuing to the “Game.” In the Game, participants 
were asked to move a symbol using the Emotiv headset to the right of the computer screen (see Figure 1) until 
the symbol overlapped with an English meaning. Participants were told to use the same consistent thought they 
practiced in the training to move the symbol to the right. They did this with eight symbols, presented in sets of two, 
with each set followed by three short Likert-scale questions. The questions asked about fun, sense of control and 
engagement after moving two symbols in each round of the four rounds of play (see Figure 2).

The CG participated in an on-screen computer activity and were told to use the computer mouse/pad only when 
they were asked to complete the survey within the computer activity. The computer activity was equivalent to the 
game given to the TG, only the CG group were asked to watch an animation of each of the eight random symbols 
moving to the right of the screen to overlap with their matching English meaning. As was the case for the TG, there 
were also four in-game surveys of three questions about fun and engagement after each set of two symbols were 
moved to the right of the screen. After the completion of all activities, both groups completed a post-test. Following 
the post-test, which asked participants to match each symbol with its English word meaning, the TG was engaged 
in a semi-structure interview and the CG completed a user experience questionnaire. Some of the interview ques-
tions included; “Tell me about your experience with the Emotiv headset”, “What were the strategies that you used 
to memorize the symbols?” Both groups received an online seven-day delayed post-test. If participants did not 
respond, a reminder was sent after another week.  

Results

Accuracy
On average, the CG recalled 5.00 (SD = 2.61) symbols correctly and TG recalled 4.14 (SD = 2.62) symbols 
correctly. We found no statically signifi cant difference between groups on their immediate recall test of matching 
symbols to English words (t = 1.81; p = 0.07; η2= 0.026).

Within the TG, an independent samples t-test was conducted to detect possible differences between subgroups 
who stated that they did, or did not, believe that they controlled the symbols’ movement in the game.  Those who 
believed they did scored on average 3.81 points (SD = 2.66) on the immediate recall test, whereas those who 
did not think they moved the objects scored 5.00 points (SD = 2.36). However, this difference was not statistically 
signifi cant (t = 1.75; p < 0.08).

There was also a statistically signifi cant correlation between participants’ immediate test scores and delayed test 
scores (p < 0.001; r = 0.67). This means that people who did well at the immediate tests did well at the delayed test 
as well. However, we should keep in mind that for the delayed test there is a selection bias. It might be the case 
that people who believed they would do well completed the delayed test.  However, as no feedback was given in 
terms of the immediate test result, this is unlikely. 

Self-report game experience

Independent samples t-tests revealed statistically signifi cant differences between CG and TG (see Table 1) for fun 
and engagement. Except in the fi nal round, the TG reported signifi cantly higher levels of Engagement than did CG. 
After the fi rst round, TG reported signifi cantly more fun than CG. Assuming the normality of the data, RM MANOVA 
was conducted to assess the difference between CG and TG in the amount of change in their ratings on the three 
items of the game experience. Prior to conducting the MANOVA, a series of Pearson correlations were performed 
between all the dependent variables in order to test the MANOVA assumption that dependent variables would be 
correlated with each other in the moderate range. This assumption was met.

Table 1: Statistics for Game Experience for Each Round
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Since the Box’s M value of 265.046 is associated with a p < 0.001, Pillais’ Trace was used for the multivariate 
tests. A statistically signifi cant MANOVA effect was obtained for the treatment, Pillais’ Trace = 0.13, F (2, 125) = 
8.99, p < 0.001, η2

 partial  = 0.13. The multivariate effect size was estimated at 0.13, which implies that 13% of the 
variance in the canonically-derived dependent variable was accounted for by treatment. A statistically signifi cant 
MANOVA effect was also obtained for Rounds, Pillais’ Trace = 0.19, F (6, 121) = 4.71, p < 0.001, η2

 partial = 0.19, 
and for the interaction between Groups and Rounds, Pillais’ Trace = 0.14, F (6, 121) = 3.39, p< 0.005. This means 
that there was a signifi cant difference between CG and TG on player experiences over four rounds. Tests of the 
Between-Subjects effects table indicate that there is a signifi cant main effect of group on Fun, Engagement and 
Control (see Table 2).

Table 2: Tests of Between-Subjects Effects of Group on Game Experience

Follow-up repeated measures ANOVAs for each dependent variable showed that main effects of round of play is 
statistically signifi cant only for Fun, (F (2.47, 311.68) = 3.01, p < 0.001, η2

 partial = 0.02. Interaction between groups 
and rounds is statistically signifi cant for Fun, F (2.47, 207.83) = 3.29, p < 0.05, η2

 partial = 0.03 and Engagement, F 
(1.65, 207.83) = 4.64, p < 0.05, η2

 partial = 0.04. This indicates that the change over rounds is associated with the 
intervention, but only for Fun and Engagement.

No statistically signifi cant differences were found within TG’s subgroups (believed they moved the symbols vs. 
not) on any of the game experience items except the sense of control in the last round. In that round those who 
believed they moved the symbols reported signifi cantly higher sense of control than those who did not think they 
moved the symbols (t = -2.23; p < 0.05).

Relationship between Accuracy and Game Experiences

A total engagement variable was created by taking an average of engagement scores over four rounds. Similarly, 
a total fun rating was created. There is a statistically signifi cant correlation between the total engagement and ac-
curacy scores for immediate (r=0.21, p<0.05) but not for delayed post tests (r=0.18, n.s.). Similarly, no signifi cant 
correlation was found between total fun and accuracy scores for immediate (r=0.13, n.s.) or for the delayed test 
(r= - 0.06, n.s.). 

Discussion and Conclusion

Although this research project is preliminary, fi ndings from the study indicate signifi cant implications for the re-
search questions (RQ) noted earlier.  

In terms of RQ1, immediate post-tests for both groups revealed that half or more of the symbols were learned from 
a baseline of zero, as the symbols were made-up abstract ones created by the researchers. The non-signifi cant 
difference between the groups indicates that the TG did no worse than the CG. We believe the novelty of the BCI 
for the TG might have affected the results. Many participants reported that they felt moving the symbols were 
interruptive to learning, although experiencing BCI itself was enjoyable. Research suggests using movement that 
is conceptually congruent with the content, if the learning environment involves movement, improves learning out-
comes (Black et al., 2012). Although BCI does not involve physical movements, imagined movement activates the 
similar region of cortex as the physical movement does (Arzy et al., 2006; Astafi ev et al., 2004; Barsalou, 2008). 
Thus, future studies could investigate whether imagined and/or physical movement that is conceptually congruent 
with the knowledge affects learning outcome with gamers. In the self-report in-game/activity survey, majority of CG 
indicated they wished they had control over the movement of the symbols instead of passively viewing the anima-
tion. When comparing between those who believe they moved the symbols and those who did not within TG, there 
was no signifi cant difference between the two groups. 

In terms of RQ2, although there were no signifi cant differences in post-tests for the two groups, the fact that the TG 
had more fun and was more engaged with the game is promising. Learning educational contents would normally 
be much longer than the time spent on the game in the present study. If learners are engaged and have fun in a 
learning environment, then positive learning outcomes are typically expected.
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In terms of RQ3, the results show that participants in TG reported higher level of engagement overall than those 
in CG. However, over time (from first to last round), participants in both groups reported that their level of fun in-
creased over the previous round of play. In addition, higher engagement resulted in higher scores in the immediate 
post-test. This supports the current literature on a correlation between engagement and learning. 

The findings from the present study show potential for using the BCI in the game-based learning environment. The 
participants using a BCI headset learned new random symbols and their English-word meaning, and they did so 
as well as those who learned from watching an animated movement of the symbols. We feel it is impressive that 
such learning occurred even though the randomly presented symbols were seen only once for each symbol, for 
a relatively short period of time (averaging approximately 8 seconds). Given the BCI headset was a completely 
new interface to the participants, additional practice and experience with the interface could result in even greater 
learning. Moreover, the participants reported that using the headset was fun and engaging; they wanted to try it 
again. While our study did not find differences in sense of control between BCI players and animation watchers, 
this may well have been a result of the novelty and disbelief that the headset was actually being controlled by 
users’ “thoughts.” For example, we note that 20 of the 72 BCI users did not believe that they had controlled the 
symbols’ movement. A greater sense of control could result as such interfaces become commonly used, familiar, 
and accepted by players. Given that BCI interfaces provide a more direct link between thought and action than 
interfaces to date, we encourage additional studies that address sense of control with users of such devices.

 In summary, the positive responses we received regarding perception of fun and engagement, and the fact that 
half of the unknown symbols and English word meanings were learned in essentially one trial, imply that a BCI 
headset has potential for gameplay, including games that embed learning activities.

References

Allison, B., Wolpaw, E., & Wolpaw, J. (2007). Brain-computer interface systems: Progress and prospects. Expert 
review of medical devices, 4(4), 463–74. doi:10.1586/17434440.4.4.463

Annetta, L. A., Lamb, R., & Stone, M. (2011). Assessing Serious Educational Games. In Serious 
 Educational Game Assessment (pp. 75-93). Boston MA: SensePublishers.

Arzy, S., Thut, G., Mohr, C., Michel, C. M., & Blanke, O. (2006). Neural basis of embodiment: 
 distinct contributions of temporoparietal junction and extrastriate body area. The Journal

 of Neuroscience, 26(31), 8074-8081.
    

Astafiev, S. V., Stanley, C. M., Shulman, G. L., & Corbetta, M. (2004). Extrastriate body area in 
 human occipital cortex responds to the performance of motor actions. Nature 
 neuroscience, 7(5), 542-548.

Black, J. B., Segal, A., Vitale, J. M., & Fadjo, C. L. (2012). Embodied cognition. In D. Jonassen & S. 
 Land (Eds.), Theoretical foundations of learning environments (2nd ed., pp. 198-223). New 
 York: Routledge.

Chavarriaga, R., & del R Millán, J. (2010). Learning from EEG error-related potentials in 
 noninvasive brain-computer interfaces. Neural Systems and Rehabilitation Engineering, 
 IEEE Transactions on, 18(4), 381-388.

Dede, C. (2009). Immersive interfaces for engagement and learning. Science, 323(5910), 66-69.

del R Millán, J. (2003). Adaptive brain interfaces. Communications of the ACM, 46(3), 74-80.

Dempsey, J. V.  (1996). Instructional Applications of Computer Games. American Educational                            
             Research Association, April 1996 NY. ERIC doc Reproduction service No. ED 394 500

Ferrez, P. W., & del R Millan, J. (2008). Error-related EEG potentials generated during 
 simulated brain–computer interaction. Biomedical Engineering, IEEE Transactions on, 
 55(3), 923-929.

Filipczak, B. (1997). Training Gets Doomed. Training, 34(8), 24-31.

Forster, B., & Haenschel, C. (n.d.). The EEG lab: Data analysis. Retrieved from 
 https://www.city.ac.uk/arts-social-sciences/psychology/research/cognitive-neuroscience-



241

 research-unit/eeg 

Gee, J. P. (2003). What video games have to teach us about literacy and learning. New York, NY: 
 Palgrave Macmillan.

Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R., ... & Edlinger, G. 
 (2009). How many people are able to control a P300-based brain–computer interface 
 (BCI)?. Neuroscience letters, 462(1), 94-98.

Griffiths, M., & Davies, M. N. (2002). Research note-excessive online computer gaming: implications for                   
              education. Journal of Computer Assisted Learning,18(3), 379-380.

Han, I., & Black, J. B. (2011). Incorporating haptic feedback in simulation for learning physics. 
 Computers & Education, 57(4), 2281-2290.

Hannafin, R. D., & Sullivan, H. J. (1995). Learner control in full and lean CAI programs. 
 Educational Technology Research and Development, 43(1), 19-30.

Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., & Pfurtscheller, G. (2007). Brain–computer communica 
             tion: motivation, aim, and impact of exploring a virtual apartment. Neural Systems and Rehabilitation  
             Engineering, IEEE Transactions on, 15(4), 473-482.

Lepper, M. R. (1988). Motivational considerations in the study of instruction. Cognition and 
 Instruction, 5(4), 289-309. 
Mayer, R. E., & Moreno, R. (1998). A cognitive theory of multimedia learning: Implications for design principles.  
             In Annual Meeting of the ACM SIGCHI Conference on Human Factors in Computing Systems,        
             Los Angeles, CA.

Middendorf M, McMillan G, Calhoun G, & Jones KS (2000). “Brain-computer interfaces based on the steady-state 
visualevoked response”, Neural Systems and Rehabilitation Engineering, Vol. 8, No. 2, IEEE Transac-
tions, 211-214.

Mitchell, A., & Savill-Smith, C. (2004). The use of computer and video games for learning: A review of the litera 
             ture. London, U.K.: The Learning and Skills Development Agency.

Müller, K. R., Krauledat, M., Dornhege, G., Curio, G., & Blankertz, B. (2004). Machine learning techniques for  
             brain-computer interfaces. Biomedical Engineering. 49(1), 11-22.

Nijholt, A., Bos, D. P. O., & Reuderink, B. (2009). Turning shortcomings into challenges: Brain–
 computer interfaces for games. Entertainment Computing, 1(2), 85-94.
Oblinger, D. G. (2004). The next generation of educational engagement. Journal of Interactive Media in Educa 
             tion, 2004(8).

Paek, S. (2012) The impact of multimodal virtual manipulatives on young children’s mathematics 
 learning. Doctoral dissertation, Retrieved from http://www.editlib.org/p/116503.

Parra, L. C., Spence, C. D., Gerson, A. D., & Sajda, P. (2003). Response error correction-a 
 demonstration of improved human-machine performance using real-time EEG monitoring.

Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 11(2), 173-177.

Prensky, M. (2001). True believers: Digital game-based learning in the military. Digital Game-based Learning.  
             New York, NY: McGraw Hill.

Schunk, D. G., & Pajares, F. (2009). Self-efficacy theory. In K. R. Wentzel & A. Wigfield (Eds.), 
 Handbook of Motivation at School (pp.35-53). New York: Routledge. 

Stipek, D. J., & Weisz, J. R. (1981). Perceived personal control and academic achievement. Review 
 of Educational Research, 51(1), 101-137. 

Van de Laar, B., Reuderink, B., Bos, D. P. O., & Heylen, D. (2010). Evaluating user experience of 
 actual and imagined movement in BCI gaming. International Journal of Gaming and 
 Computer-Mediated Simulations, 2(4), 33-47. 


